
TriMix: A General Framework for Medical
Image Segmentation from Limited Supervision

Zhou Zheng1,∗ Yuichiro Hayashi1 Masahiro Oda1

Takayuki Kitasaka2 Kensaku Mori1,3,∗

1Nagoya University 2Aichi Institute of Technology
3National Institute of Informatics

∗zzheng@mori.m.is.nagoya-u.ac.jp, kensaku@is.nagoya-u.ac.jp

Abstract. We present a general framework for medical image segmenta-
tion from limited supervision, reducing the reliance on fully and densely
labeled data. Our method is simple, jointly trains triple diverse mod-
els, and adopts a mix augmentation scheme, and thus is called TriMix.
TriMix imposes consistency under a more challenging perturbation, i.e.,
combining data augmentation and model diversity on the tri-training
framework. This straightforward strategy enables TriMix to serve as a
strong and general learner learning from limited supervision using differ-
ent kinds of imperfect labels. We conduct extensive experiments to show
TriMix’s generic purpose for semi- and weakly-supervised segmentation
tasks. Compared to task-specific state-of-the-arts, TriMix achieves com-
petitive performance and sometimes surpasses them by a large margin.
The code is available at https://github.com/MoriLabNU/TriMix.

1 Introduction

Segmentation is fundamental in medical image analysis, recognizing anatom-
ical structures. Supervised learning has led to a series of advancements in medi-
cal image segmentation [1]. However, the availability of fully and densely labeled
data is a common bottleneck in supervised learning, especially in medical image
segmentation, since annotating pixel-wise labels is usually tedious and time-
consuming and requires expert knowledge. Thus, training a model with limited
supervision using datasets with imperfect labels is essential.

Existing works have made efforts to take advantage of unlabeled data and
weakly labeled data to train segmentation models [2] with semi-supervised learn-
ing (SSL) [3–5] and weakly-supervised learning [6–8]. Semi-supervised segmenta-
tion [9–11] is an effective paradigm for learning a model from scarce annotations,
exploiting labeled and unlabeled data. Weakly-supervised segmentation aims
to alleviate the longing for densely labeled data, utilizing sparse annotations,
e.g., points and scribbles, as supervision signals [2]. In this study, in addition
to semi-supervised segmentation, we focus on scribble-supervised segmentation,
one of the hottest topics in the family of weakly-supervised learning. A con-
ceptual comparison of fully-supervised, semi-supervised, and scribble-supervised
segmentation is shown in Fig. 1.
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Fig. 1. Conceptual comparison of fully-supervised (using fully and densely labeled
data), semi-supervised (using a part of densely labeled data and unlabeled data), and
scribble-supervised (using data with scribble annotations) segmentation.

Consistency regularization aims to enforce the prediction agreement under
different kinds of perturbations, e.g., input augmentation [3, 9], network diver-
sity [11, 12], and feature perturbation [13]. Recent works [7, 8, 14–20] involving
consistency regularization shows advanced performance tackling limited super-
vision. Despite their success in learning from non-fullness supervision, an imped-
iment is that existing studies are task-specific for semi- and scribble-supervised
segmentation. Driven by this limitation, a question to ask is: Does a framework
generic to semi- and scribble-supervised segmentation exist? Although the two
tasks leverage different kinds of imperfect labels, indeed, they have the same in-
trinsic goal: mining the informative information as much as possible from pixels
with no ground truth. Thus, such a framework should exist once it can excellently
learn representations from the unlabeled pixels.

Consistency regularization under a more rigorous perturbation empirically
leads to an improved generalization [11]. However, lacking sufficient supervision,
models may output inaccurate predictions and then learn from these under con-
sistency enforcement. This vicious cycle would accumulate prediction mistakes
and finally lead to degraded performance. Thus, the key to turning the vicious
cycle into a virtuous circle is increasing the quality of model outputs when adopt-
ing a more challenging consistency regularization. From these perspectives, we
hypothesize that an eligible framework should be endowed with these charac-
teristics: (i) it should output more accurate predictions, and (ii) it should be
trained with consistency regularization under a more challenging perturbation.

Based on the above hypothesis, we find a solution: we present a general and
effective framework that, for the first time, shows its dual purpose for both semi-
and scribble-supervised segmentation tasks. The method is simple, jointly trains
triple models, and adopts amix augmentation scheme, and thus is called TriMix.
To meet the requirement of (i), TriMix maintains triple networks, which have
identical structures but different initialization to introduce model perturbation
and imposes consistency to minimize disagreement among models, inspired by
the original tri-training strategy [21]. Intuitively, more diverse models can ex-
tract more informative information from the dataset. Each model receives valu-
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able information from the other two through intra-model communication and
then generates more accurate predictions. To meet the requirement of (ii), the
model diversity is further blended with data perturbation, which accompanies the
mix augmentation scheme, to form a more challenging perturbation. We hypoth-
esize that the tri-training scheme within TriMix well complements consistency
regularization under the hybrid perturbation. This self-complementary manner
enables TriMix to serve as a general learner learning from limited supervision
using different kinds of imperfect labels. Our contributions are:

• We propose a simple and effective method called TriMix and show its generic
solution for semi- and scribble-supervised segmentation for the first time.

• We show that purely imposing consistency under a more challenging per-
turbation, i.e., combining data augmentation and model diversity, on the
tri-training framework can be a general mechanism for limited supervision.

• We first validate TriMix on the semi-supervised task. TriMix presents com-
petitive performance against state-of-the-art (SOTA) methods and surpris-
ingly strong potential under the one-shot setting1, which is rarely challenged
by existing semi-supervised segmentation methods.

• We then evaluate TriMix on the scribble-supervised task. TriMix surpasses
the mainstream methods by a large margin and realizes new SOTA perfor-
mance on the public benchmarks.

2 Related Work

Semi-supervised learning (SSL) trains a model utilizing both labeled and
unlabeled data. Existing SSL methods are generally based on pseudo-labeling
(also called self-training) [5, 25–27] and consistency regularization [3, 4, 28, 29].
Pseudo-labeling takes the model’s class prediction as a label to train against, but
the label quality heavily influences the performance. Consistency regulariza-
tion assumes predictions should be invariant under perturbations, such as input
augmentation [3, 9], network diversity [11, 12], and feature perturbation [13].
Consistency regularization usually performs better than self-training and has
been widely involved in the task of semi-supervised segmentation [14–18,
30, 31]. A more challenging perturbation empirically profits model generaliza-
tion if the model could sustainably generate accurate predictions [11]. In this
work, we introduce a hybrid perturbation harsher than its elements, i.e., data
augmentation, and model diversity.

Weakly-supervised segmentation learns a model using the dataset with
weak annotations, e.g., bounding boxes, scribbles, sparse dots, and polygons [2].
In this work, we utilize scribbles as weak annotations, which are mostly used in
computer vision community, from classical methods [32, 33] to current scribble-
supervised methods [6–8, 19, 34–37], due to the convenient format. To learn

1 Note that the concepts of one-shot learning [22–24] and semi-supervised learning
should be different. We borrow the phrase “one-shot” to define a more challenging
semi-supervised setting where only one labeled sample is available during training.
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from scribble supervision, some methods [34–36] make efforts to construct com-
plete labels based on the scribble for training. Other works like [37, 38] explore
possible losses to regularize the training from scribble annotations, and the
scheme of [6] adds additional modules to improve the segmentation accuracy.
Recently, consistency regularization is explored in several works [7, 8, 20, 39].

Data augmentation generates virtual training examples to improve model
generalization. Auto-augmentation methods [40–43] automatically search for op-
timal data augmentation policies and show higher accuracy than handmade
schemes but with relatively higher search costs. In our study, we focus on the
mix augmentation [44–50], which is one type of strong data augmentation and
is more efficient than auto-augmentation methods. Mix augmentation mixes two
inputs and the corresponding labels up in some way to create virtual samples for
training. It has been widely applied in semi-supervised segmentation [9–11] as
an effective way to import data perturbation and synthesize new samples during
training. In [7], mix segmentation is firstly introduced to increment supervision
for scribble-supervised segmentation.

Co-training and tri-training are two SSL approaches in a similar fla-
vor, which maintain multiple models and regularize the disagreement among the
outputs of models. Co-training framework [51, 52] assumes there are sufficient
and different views of the training data, each of which can independently train a
model. Maintaining view diversity, in some sense, is similar to the data perturba-
tion in SSL. Co-training has been extended to semi-supervised segmentation [18,
53]. Unlike co-training, tri-training [21] does not require view difference. Instead,
it introduces model diversity and minimizes the disagreement among various
outputs. This strategy is similar to imposing consistency under the model per-
turbation in SSL. There are several variants of tri-training [54–57], but none are
for semi- or scribble-supervised segmentation. In this work, we revisit tri-training
and explore its potential and general solution for handling limited supervision
when it meets mix augmentation.

3 Method

3.1 Overview

This paper proposes a simple and general framework, TriMix, to tackle semi-
and scribble-supervised segmentation. The plain architecture of TriMix is il-
lustrated in Fig. 2. TriMix adheres to the spirit of tri-training, simultaneously
learning triple networks f1, f2, and f3, which have identical structures but dif-
ferent weights w1, w2, and w3, to import network inconsistency. In addition,
mix augmentation is adopted to introduce input data perturbation. Generally,
assume a mini-batch b = {x,y} is fetched at each training iteration, where x
and y are images and the corresponding ground truth. TriMix involves three
steps to process a batch flow at each training iteration.

Step 1: first forward pass. For i ∈ {1, 2, 3}, each network fi is fed with
images x and outputs the prediction pi. A supervised loss Lsup (pi,y) is then
imposed between pi and the ground truth y.
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Fig. 2. Overview of TriMix. TriMix maintains triple networks f1, f2, and f3, which
have same architectures but different weights. Three steps are taken when given a
mini-batch containing images x and ground truth y at each training iteration. Step
1: first forward pass. For i ∈ {1, 2, 3}, each network fi outputs pi for x, with the
supervision of y. Step 2: mix augmentation. Three batches {x,y,p1}, {x,y,p2},
and {x,y,p3} are randomly shuffled to obtain new batches {x̃1, ỹ1, p̃1}, {x̃2, ỹ2, p̃2},
and {x̃3, ỹ3, p̃3}. Then each pair of these new batches are mixed up to form batches
{x̄1, x̄2, x̄3}, {ȳ1, ȳ2, ȳ3}, {ŷ1, ŷ2, ŷ3}. Squares with mixed colors indicate mixed sam-
ples. Step 3: second forward pass. For i ∈ {1, 2, 3}, each network fi outputs p̄i for
x̄i, with the supervision of ȳi. An unsupervised loss is calculated between p̄i and ŷi.
Note that ŷi can be soft (probability maps) or hard pseudo-labels (one-hot maps).
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Step 2: mix augmentation. With Step 1, we obtain three batches b1 =
{x,y,p1}, b2 = {x,y,p2}, and b3 = {x,y,p3}. The goal is to mix up the
pair of (b2,b3), the pair of (b1,b3), and the pair of (b1,b2) to generate new
batches. Similar to the mixing operation described in original papers [44, 46],
we first randomly shuffle b1, b2, and b3 to generate three new batches of b̃1 =
{x̃1, ỹ1, p̃1}, b̃2 = {x̃2, ỹ2, p̃2}, and b̃3 = {x̃3, ỹ3, p̃3}, in which x̃1, x̃2, and x̃3

have different image order, and each ỹi and p̃i correspond to x̃i for i ∈ {1, 2, 3}.
Afterward, we apply the mix augmentation to the pair of

(
b̃2, b̃3

)
, the pair of(

b̃1, b̃3

)
, and the pair of

(
b̃1, b̃2

)
to generate new batches of b̄1 = {x̄1, ȳ1, ŷ1},

b̄2 = {x̄2, ȳ2, ŷ2}, and b̄3 = {x̄3, ȳ3, ŷ3} with mixed samples. Take the pair of(
b̃2, b̃3

)
, for example. Each image of x̃2 is mixed with the image indexed in the

same order in x̃3 to yield x̄1, then ỹ2 and ỹ3, p̃2 and p̃3 are proportionally mixed
to get ȳ1 and ŷ1. Squares with mixed colors in Fig. 2 indicate mixed samples.

Step 3: second forward pass. For i ∈ {1, 2, 3}, we feed each network fi
with mixed images x̄i to get the individual prediction p̄i. Each p̄i is optimized
to be close to the mixed ground truth ȳi with a supervised loss Lsup (p̄i, ȳi).
Besides, consistency is enforced between p̄i and the mixed pseudo-labels ŷi,
with an unsupervised loss Lunsup (p̄i, ŷi). Note that ŷi could be soft (probabil-
ity maps) or hard pseudo-labels (one-hot maps). A typical choice selected by
most methods [4, 14, 17] is a soft pseudo-label, and an unsupervised loss Lp

unsup

compares the probability consistency by the mean square error (MSE) equation.
By contrast, several works, e.g., [8, 10] utilize a hard pseudo-label, where an
unsupervised loss Ls

unsup calculates the pseudo supervision consistency.
To conclude, the total optimization objective of each network is

Li = Lsup (pi,y) + λ1Lsup(p̄i, ȳi) + λ2Lunsup (p̄i, ŷi) , (1)

where i ∈ {1, 2, 3} is the index pointing out items corresponding to network fi,
and λ1 and λ2 are hyperparameters to balance each term.

Default settings. In this study, we adopt pseudo supervision consistency.
We will show that TriMix potentially achieves better accuracy integrated with
pseudo supervision consistency than probability consistency in Section 4.4. Be-
sides, we utilize CutMix [46] as the mix strategy, similar to [9–11], but note that
other kinds of mix augmentations should also fit our framework.

Inference process. Triple networks with different weights are in TriMix. For
a test sample, each network individually outputs a prediction. We will report the
average result of them and report their ensemble result obtained by soft voting.

The below two sections will show how TriMix can be applied to semi- and
scribble-supervised tasks, following the standard process from Step 1 to Step 3.

3.2 TriMix in Semi-Supervised Segmentation

Semi-supervised segmentation aims to learn a model by exploiting two given
datasets: labeled dataset Dl = {Xl,Yl}, and unlabeled dataset Du = {Xu},
where X and Y are images and the corresponding ground truth.
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Assume a mini-batch of labeled data bl = {xl,yl} ∈ Dl and a mini-batch
of unlabeled data bu = {xu} ∈ Du are sampled at each training iteration. We
illustrate the training detail of bl and bu in the following.

First, the mini-batch bl contains the images and the corresponding ground
truth, and TriMix can be optimized with bl obeying the standard process as il-
lustrated in Fig. 2. However, existing SSL methods, e.g., [10, 11] rarely introduce
perturbations to the labeled data, even though it is beneficial for performance.
Following previous methods, we optimize TriMix only with Step 1 and eliminate
the processes of Step 2 and Step 3 when using bl. Thus, for i ∈ {1, 2, 3}, assume
each network fi outputs perdition pli for images xl, then only a supervised loss
Lsup (pli ,yl) is calculated between pli and the ground truth yl.

Second, the mini-batch bu contains images xu but no related labels. TriMix
can still be optimized with bu following the standard process as illustrated in
Fig. 2 but without supervised terms. Specifically, for i ∈ {1, 2, 3}, each net-
work fi outputs individual prediction pui

for xu with the first forward pass at
Step 1. There is no supervised term at Step 1 for each pui , due to the lack of
ground truth. At Step 2, three batches bu1 =

{
xu,pu1

}
, bu2 =

{
xu,pu2

}
, and

bu3
=

{
xu,pu3

}
, which contain no ground truth, can be mixed up to generate

augmented batches b̄u1 = {x̄u1 , ŷu1},b̄u2 = {x̄u2 , ŷu2}, and b̄u3 = {x̄u3 , ŷu3},
that have no mixed ground truth. At Step 3, each network fi fed with mixed
images x̄ui

is expected to output a similar prediction p̄ui
compared to ŷui

, with
an unsupervised loss Lunsup (p̄ui

, ŷui
).

To conclude, the total training objective of each network in this task is

Li = Lsup (pli ,yl) + λLunsup(p̄ui , ŷui) , (2)

where items with i ∈ {1, 2, 3} correspond to network fi, and λ is a trade-off
hyperparameter. Moreover, we use the dice loss [58] Ldice as both the supervised
and unsupervised losses. Thus, Eq. (2) is re-written as

Li = Ldice (pli ,yl)︸ ︷︷ ︸
sup

+λLdice (p̄ui
, ŷui

)︸ ︷︷ ︸
unsup

. (3)

3.3 TriMix in Scribble-Supervised Segmentation

Scribble-supervised segmentation trains a model from a given dataset Ds =
{Xs,Ys}, where Xs and Ys are images and the related scribble annotations.

Let bs = {xs,ys} ∈ Ds indicate a mini-batch fetched at every training itera-
tion. Since bs contains images and the corresponding ground truth in scribbles,
we follow the standard process illustrated in Fig. 2 to train TriMix with bs. Let
us say, for i ∈ {1, 2, 3}, each network fi outputs its prediction psi for xs at Step
1, and we obtain mixed batches of b̄s1 = {x̄s1 , ȳs1 , ŷs1}, b̄s2 = {x̄s2 , ȳs2 , ŷs2},
and b̄s3 = {x̄s3 , ȳs3 , ŷs3} at Step 2. Then identical to Eq. (1), the training
objective of each network fi in scribble-supervised segmentation is

Li = Lsup (psi ,ys) + λ1Lsup (p̄si , ȳsi) + λ2Lunsup (p̄si , ŷsi) , (4)
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where λ1 and λ2 are hyperparameters balancing each term.
Besides, since ys and ȳsi are scribble annotations, we apply the partial cross-

entropy (pCE) function [38] Lpce, which calculates the loss only for annotated
pixels as the supervised loss, following [7, 8, 38]. Formally, let m and n be the
prediction and the scribble annotation, and Lpce (m,n) is defined as

Lpce (m,n) = −
∑
j∈J

∑
k∈K

njk logmjk, (5)

in which J is the set of pixels with scribble annotation, K is the number of
classification categories. mjk indicates the predicted value of k-th channel for
the j-th pixel in m, and njk is the corresponding ground truth of k-th channel
for the j-th pixel annotation in n.

Lastly, we use the cross-entropy (CE) loss Lce as the unsupervised loss. Thus,
Eq. (4) is re-written as

Li = Lunmix
pce (psi ,ys) + λ1L

mix
pce (p̄si , ȳsi)︸ ︷︷ ︸

sup

+λ2L
mix
ce (p̄si .ŷsi)︸ ︷︷ ︸

unsup

, (6)

where the superscript unmix denotes that labels for calculation are original and
without the mix augmentation. The superscript mix indicates that labels and
pseudo-labels for calculation are generated from the mix augmentation.

4 Experiments on Semi-Supervised Segmentation

4.1 Data and Evaluation Metric

ACDC dataset [59] consists of 200 MRI volumes from 100 patients, and
each volume manually delineates the ground truth for the left ventricle (LV),
the right ventricle (RV), and the myocardium (Myo). The original volume sizes
are (154 − 428) × (154 − 512) × (6 − 18) pixels. We resized all the volumes
to 256 × 256 × 16 pixels and normalized the intensities as zero mean and unit
variance. We performed 4-fold cross-validation. We validated our method under
the 16/150 partition protocol. In each fold, we sampled 16 volumes among 150
as the labeled data, and the remaining ones were treated as unlabeled data.

Hippocampus dataset was collected by The Medical Segmentation De-
cathlon2, is comprised of 390 MRI volumes of the hippocampus. We utilized
the training set (260 volumes) for validation, which contains the corresponding
ground truth of the anterior and posterior regions of the hippocampus. Volume
sizes are (31 − 43) × (40 − 59) × (24 − 47) pixels. We resized all the volumes
to 32 × 48 × 32 pixels. With this dataset, we challenged a more tough problem
where only one labeled sample is available for training, i.e., one-shot setting.
We conducted 4-fold cross-validation, sampled 1 volume among 195 cases as the
labeled data in each fold, and treated the rest as unlabeled data.

Evaluation metric. Dice score and 95% Hausdorff Distance (95HD) were
used to measure the volume overlap rate and the surface distance.

2 http://medicaldecathlon.com/
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Table 1. Comparison with semi-supervised state-of-the-arts on ACDC dataset
under 16/150 partition protocol. We report the average (standard deviation) results
based on 4-fold cross-validation. †: method with ensemble strategy.

method
RV Myo LV avg

Dice 95HD Dice 95HD Dice 95HD Dice 95HD

upper bound 81.6 (2.8) 4.2 (2.3) 79.5 (1.6) 2.0 (0.3) 89.6 (1.7) 2.2 (0.6) 83.6 2.8
baseline 58.9 (2.3) 28.7 (8.3) 56.1 (3.3) 17.0 (3.1) 70.4 (2.5) 12.1 (5.3) 61.8 19.3

MT [4] 58.1 (3.1) 27.2 (9.3) 58.0 (3.8) 14.8 (1.4) 70.5 (4.0) 7.8 (3.6) 62.2 16.6
UA-MT [14] 54.5 (7.5) 35.4 (6.3) 58.6 (3.2) 17.9 (1.9) 72.1 (3.1) 10.3 (2.2) 61.7 21.2
CutMix-Seg [9] 57.4 (2.7) 36.1 (5.0) 59.3 (4.2) 18.8 (4.3) 71.8 (2.1) 14.2 (9.9) 62.8 23.0
STS-MT [28] 57.1 (4.1) 33.0 (5.4) 60.1 (3.3) 13.5 (2.5) 72.0 (2.7) 9.2 (3.1) 63.1 18.6
CPS [10] 74.6 (3.2) 7.0 (2.1) 72.5 (2.0) 5.0 (1.4) 84.8 (1.2) 5.5 (1.5) 77.3 5.9
UMCT [18] 58.2 (2.8) 29.1 (4.7) 60.4 (2.9) 16.4 (5.4) 74.6 (2.3) 11.1 (5.7) 64.4 18.9

UMCT† [18] 61.9 (2.0) 21.9 (4.6) 63.2 (3.5) 11.3 (5.4) 78.3 (1.1) 7.9 (5.0) 67.8 13.7

TriMix 73.9 (3.5) 7.9 (2.4) 72.8 (1.7) 4.3 (1.1) 85.8 (1.7) 4.7 (1.3) 77.5 5.6

TriMix† 74.8 (3.6) 6.4 (2.0) 73.7 (1.9) 3.9 (1.1) 86.3 (1.7) 3.9 (1.2) 78.3 4.7

4.2 Experimental Setup

Implementation details. We adopted V-Net [58] as the backbone archi-
tecture. To fit the volumetric data, we extended CutMix [46] to 3D and set the
cropped volume ratio to 0.2. We empirically set λ to 0.5 in Eq. (3). We trained
TriMix 300 epochs using SGD with a weight decay of 0.0001 and a momentum
of 0.9. The initial learning rate was set to 0.01 and was divided by 10 every
100 epochs. At each training iteration, 4 labeled and 4 unlabeled samples were
fetched for the ACDC dataset, and 1 labeled and 4 unlabeled samples were
fetched for the Hippocampus dataset.

Baseline and upper bound. We provided the baseline and upper bound
settings for reference. We trained the backbone V-Net only with the partitioned
labeled data and treated the result as the baseline setting. Besides, we regraded
the result trained with the complete labeled data as the upper bound accuracy.

Mainstream approaches. We implemented several SSL algorithms: Mean
Teacher (MT) [4], Uncertainty-Aware Mean Teacher (UA-MT) [14], CutMix-
Seg [9], Spatial-Temporal Smoothing Mean Teacher (STS-MT) [28], Uncertainty-
Aware Multi-View Co-Training (UMCT) [18], and Cross Pseudo Supervision
(CPS) [10], and compared TriMix to them. CutMix-Seg and CPS were incorpo-
rated with the 3D CutMix augmentation. UMCT was trained with three differ-
ent views. We will report the student model results for MT, UA-MT, STS-MT,
and CutMix-Seg. Since there is more than one trainable model within CPS and
UMCT, we will report their average result among the trained models and the
ensembled result for UMCT, the same as TriMix.

4.3 Experiment Results

Improvement over the baseline. We investigated TriMix’s effectiveness
in exploiting the unlabeled data. As illustrated in Table 1 and Table 2, we note
that TriMix significantly improve the baseline. Specifically, it gains +15.7% in
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10 Zheng et al.

Table 2. Comparison with semi-supervised state-of-the-arts on Hippocampus
dataset with one-shot setting. We report the average (standard deviation) results based
on 4-fold cross-validation. †: method with ensemble strategy.

method
anterior posterior avg

Dice 95HD Dice 95HD Dice 95HD

upper bound 84.4 (0.7) 1.5 (0.1) 82.6 (0.8) 1.4 (0.1) 83.5 1.5
baseline 12.9 (2.8) 9.9 (1.7) 14.7 (5.3) 9.9 (1.5) 13.8 9.9

MT [4] 25.2 (5.9) 9.5 (1.2) 29.2 (7.2) 10.2 (1.6) 27.2 9.9
UA-MT [14] 23.3 (2.4) 8.5 (0.6) 34.7 (9.7) 9.3 (0.6) 29.0 8.9
CutMix-Seg [9] 29.7 (5.6) 7.5 (1.1) 41.5 (10.8) 8.9 (0.7) 35.6 8.2
STS-MT [28] 26.1 (2.5) 9.5 (1.1) 31.3 (9.5) 10.7 (1.3) 28.7 10.1
CPS [10] 55.1 (4.6) 5.9 (0.8) 56.8 (2.7) 4.5 (0.1) 56.0 5.2
UMCT [18] 30.3 (8.9) 6.9 (0.6) 26.0 (9.8) 5.4 (1.7) 28.2 6.2

UMCT† [18] 35.3 (12.0) 3.9 (1.0) 27.6 (11.2) 3.6 (1.2) 31.5 3.8

TriMix 70.0 (3.4) 3.0 (0.3) 67.0 (2.1) 3.2 (0.4) 68.5 3.1

TriMix† 70.5 (3.6) 2.9 (0.4) 68.0 (1.7) 3.0 (0.3) 69.2 3.0

Dice and -13.7 in 95HD on the ACDC dataset and +54.7% in Dice and -6.8 in
95HD on the Hippocampus dataset, demonstrating that TriMix can effectively
mine informative information from the unlabeled data to improve generalization.

Comparison with SOTAs. For the ACDC dataset under 16/150 parti-
tion protocol (see Table 1), CutMix-Seg achieves better average results than
MT and confirms its effectiveness with strong input perturbation. STS-MT em-
ploys the spatial-temporal smoothing mechanism and outperforms CutMix-Seg.
UMCT is in a co-training style and takes advantage of multi-view information.
It brings higher accuracy than STS-MT but can not achieve the performance of
CPS. TriMix obtains the best results among the methods. For the Hippocampus
dataset with the one-shot setting (see Table 2), the existing SSL methods gen-
erally improve the baseline, verifying how effectively they exploit the unlabeled
data. TriMix greatly outperforms the other methods, producing meaningful ac-
curacy. Notably, TriMix surpasses the second-best method CPS by +12.5% in
Dice and -2.1 in 95HD. Validation of these two datasets reveals that TriMix is
competitive with SOTAs under typical partition protocols and has strong po-
tential for learning from extremely scarce labeled data.

4.4 Empirical Study and Analysis

Pseudo supervision consistency vs. probability consistency. We com-
pared the pseudo supervision consistency (denoted by Ls

unsup) and probability
consistency (denoted by Lp

unsup) on the ACDC and Hippocampus datasets under
different partition protocols. Results are shown in Fig. 3. Overall, TriMix incor-
porated with Ls

unsup outperforms TriMix with Lp
unsup across all the partition

protocols on the two datasets. Especially under the one-shot setting on the Hip-
pocampus dataset, Ls

unsup surpasses L
p
unsup by +54.2% in Dice and -5.9 in 95HD,

indicating that a one-hot label map plays a more crucial role than a probability
map as the expanded ground truth to supervise the other models within the

643



TriMix 11

16/150 32/150 72/15060

65

70

75

80

85
Di

ce

61.8

71.4

78.8

61.7

74.2

80.4

67.1

75.1

79.9
77.5

81.4
83.9

78.3

82.1
84.6

upper bound baseline UA-MT TriMix (w / Lp
unsup) TriMix (w / Ls

unsup) TriMix  (w / Ls
unsup)

16/150 32/150 72/150

5

10

15

20

95
HD

19.3

11.7

7.2

21.2

9.1

6.5

13.3

6.9
4.95.6

3.7 2.8
4.7

3.2 2.5

(a) ACDC

1/195 20/195 96/195

20

40

60

80

Di
ce

13.8

78.9 82.3

29.0

80.2 83.1

14.3

79.6 82.8

68.5

80.2 83.7

69.2

80.5 84.2

1/195 20/195 96/195
2

4

6

8

10

95
HD

9.9

1.8 1.6

8.9

1.8 1.5

9.0

1.8 1.5

3.1

1.8 1.6

3.0

1.8 1.5

(b) Hippocampus

Fig. 3. Empirical study on different types of consistency regularization and various
partition protocols with ACDC and Hippocampus datasets. Ls

unsup: an unsupervised
loss that compares pseudo supervision consistency. Lp

unsup: an unsupervised loss that
calculates probability consistency. †: method with ensemble strategy.

framework TriMix. Previous works [5, 8, 10] have reported similar observations.
Using hard pseudo-labels encourages models to be low-entropy/high-confidence
on data and is closely related to entropy minimization [60]. Based on this ab-
lation, we utilize the pseudo supervision consistency as the default setting for
TriMix in semi- and scribble-supervised segmentation.

Robustness to different partition protocols. We studied TriMix’s ro-
bustness to various partition protocols on the ACDC and Hippocampus datasets.
As shown in Fig. 3, TriMix consistently promotes the baseline and outperforms
UA-MT across all the partition protocols, demonstrating the robustness and
effectiveness of our method under different data settings. Moreover, TriMix sur-
passes the upper bound accuracy under the 72/150 partition protocol on the
ACDC dataset and the 96/195 partition protocol on the Hippocampus dataset,
revealing that TriMix can greatly reduce dependence on the labeled data.

Relations to existing methods. Among the semi-supervised methods for
comparison, UMCT and CPS are the two most related methods to TriMix.
UMCT is a co-training-based strategy to introduce view differences. Thus, TriMix
resembles UMCT in some sense as both methods follow the spirit of multi-model
joint training and encourage consistency among models. However, TriMix adopts
a stricter perturbation than UMCT. Moreover, CPS can be regarded as a down-
graded version of TriMix, in which two perturbed networks are trained to gen-
erate hard pseudo-labels to supervise each other. TriMix outperforms UMCT
and CPS on the ACDC and Hippocampus datasets, demonstrating the superi-
ority of our strategy, where consistency regularization under a more challenging
perturbation is adopted in tri-training.
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5 Experiments on Scribble-Supervised Segmentation

5.1 Data and Evaluation Metric

ACDC dataset [59] introduced in Section 4.1 was reused in this task, but
with corresponding scribble annotations [6]. We resized all slices to the size of
256×256 pixels and normalized their intensity to [0,1], identical to the work [8].

MSCMRseg dataset [61] comprises of LGE-MRI images from 45 patients.
We utilized the scribble annotations of LV, Myo, and RV released from [7] and
used the same data partition setting as theirs: 25 images for training, 5 for
validation, and 15 for testing. For data prepossessing, we re-sampled all images
to the resolution of 1.37×1.37 mm, cropped or padded images to the size of
212×212 pixels, and normalized each image to zero and unit variance.

Evaluation metric. Dice score and 95HD were utilized.

5.2 Experimental Setup

Implementation details. We adopted the 2D U-Net architecture [62] as
the backbone for all experiments in this task. The cropped area ratio was set
to 0.2 when performing the CutMix augmentation. λ1 and λ2 in Eq. (6) were
empirically set to 1. For the ACDC dataset, we used almost the same settings
as in [8]. Specifically, we used SGD (weight decay = 0.0001, momentum = 0.9)
to optimize TriMix for a total of 60000 iterations under a poly learning rate
with an initial value of 0.03. The batch size was set to 12. We performed 5-fold
cross-validation. For the MSCMRseg dataset, we followed [7] to train TriMix
1000 epochs with the Adam optimizer and a fixed learning rate of 0.0001. We
conducted 5 runs with seeds 1, 2, 3, 4 and 5.

Baseline and upper bound. 2D U-Net trained with scribble annotations
using the pCE loss [38] was regarded as the baseline setting. Furthermore, the
upper bound accuracy was obtained using entirely dense annotations.

Mainstream approaches. We compared TriMix with several methods, in-
cluding training with pseudo-labels generated by Random Walks (RW) [33],
Scribble2Lables (S2L) [19], Uncertainty-Aware Self-Ensembling and Transforma-
tion Consistency Model (USTM) [39], Entropy Minimization (EM) [60], Mum-
ford–Shah Loss (MLoss) [63], Regularized Loss (RLoss) [37], Dynamically Mixed
Pseudo Labels Supervision (simply abbreviated to DMPLS in this paper) [8], Cy-
cleMix [7], and Shape-Constrained Positive-Unlabeled Learning (ShapePU) [20].

5.3 Experiment Results

Improvement over baseline. As shown in Table 3 and Table 4, TriMix
significantly improves the baseline on the ACDC and MSCMRseg datasets, gain-
ing +20.2% and +49.6% Dice scores, respectively, which proves that TriMix can
learn good representations from sparse scribble annotations.

Comparison with SOTAs. For the ACDC dataset (see Table 3), TriMix
achieves the highest average accuracy in Dice and 95HD among all scribble-
supervised methods and reaches the closest result to the upper bound accuracy.
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Table 3. Comparison with scribble-supervised state-of-the-arts on ACDC
dataset. Other average (standard deviation) results are from [8]. Ours are based on
5-fold cross-validation. †: method with ensemble strategy.

method
RV Myo LV avg

Dice 95HD Dice 95HD Dice 95HD Dice 95HD

upper bound 88.2 (9.5) 6.9 (10.8) 88.3 (4.2) 5.9 (15.2) 93.0 (7.4) 8.1 (20.9) 89.8 7.0
baseline 62.5 (16.0) 187.2 (35.2) 66.8 (9.5) 165.1 (34.4) 76.6 (15.6) 167.7 (55.0) 68.6 173.3

RW [33] 81.3 (11.3) 11.1 (17.3) 70.8 (6.6) 9.8 (8.9) 84.4 (9.1) 9.2 (13.0) 78.8 10.0
USTM [39] 81.5 (11.5) 54.7 (65.7) 75.6 (8.1) 112.2 (54.1) 78.5 (16.2) 139.6 (57.7) 78.6 102.2
S2L [19] 83.3 (10.3) 14.6 (30.9) 80.6 (6.9) 37.1 (49.4) 85.6 (12.1) 65.2 (65.1) 83.2 38.9
MLoss [63] 80.9 (9.3) 17.1 (30.8) 83.2 (5.5) 28.2 (43.2) 87.6 (9.3) 37.9 (59.6) 83.9 27.7
EM [60] 83.9 (10.8) 25.7 (44.5) 81.2 (6.2) 47.4 (50.6) 88.7 (9.9) 43.8 (57.6) 84.6 39.0
RLoss [37] 85.6 (10.1) 7.9 (12.6) 81.7 (5.4) 6.0 (6.9) 89.6 (8.6) 7.0 (13.5) 85.6 6.9
DMPLS [8] 86.1 (9.6) 7.9 (12.5) 84.2 (5.4) 9.7 (23.2) 91.3 (8.2) 12.1 (27.2) 87.2 9.9

TriMix 87.7 (2.8) 8.9 (4.6) 86.4 (2.2) 4.3 (1.6) 92.3 (3.0) 4.4 (1.9) 88.8 5.9

TriMix† 88.3 (2.6) 8.2 (4.1) 86.8 (2.2) 3.7 (1.5) 92.6 (2.7) 3.8 (1.8) 89.3 5.2

It is worth noting that TriMix obtains a gain of 1.6% in Dice over DMPLS and a
reduction of 1.0 in 95HD than RLoss. For the MSCMRseg dataset (see Table 4),
TriMix surpasses all mix augmentation-based schemes, i.e., MixUp, CutOut,
CutMix, PuzzleMix, CoMixUp, and CycleMix, as well as two SOTAs, i.e., Cy-
cleMix, and ShapePU. TriMix outperforms CycleMix by +7.4% and ShapePU by
+2.2% and even improves the upper bound accuracy by +11.9% in Dice. Evalu-
ations of these two benchmarks reveal that TriMix shows stronger generalization
learning from sparse annotations than SOTAs.

5.4 Empirical Study and Analysis

Ablation on different loss combinations. We investigated the effective-
ness of different loss combinations on the accuracy, as illustrated in Fig. 4. Only
leveraging the original scribble annotations, Lunmix

pce brings the lower bound accu-

racy. Lmix
pce contributes to the performance and boosts the lower bound by +2.8%

in Dice, showing that mix augmentation aids in increasing scribble annotations
and thus improves accuracy. Lmix

ce contributes much more than Lunmix
pce and im-

proves the lower bound by +41.0% in Dice, revealing that pseudo supervision is
essential for TriMix. Besides, combining all losses yields the highest accuracy.

Relations to existing methods. TriMix is related to DMPLS and Cy-
cleMix. Specifically, DMPLS utilizes co-labeled pseudo-labels from multiple di-
verse branches to supervise single-branch output based on consistency regulariza-
tion. CycleMix employs mix augmentation to increase scribble annotations and
imposes consistency under the input perturbation. TriMix seems to be at the
middle ground. It imports mix augmentation similar to CycleMix and enforces
the consistency among various outputs with pseudo-label supervision, resembling
DMPLS. TriMix incorporates valid features beneficial for scribble-supervised seg-
mentation and achieves the new SOTA performance on two public benchmarks,
i.e., the ACDC and MSCMRseg datasets.
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Table 4. Comparison with scribble-
supervised state-of-the-arts on
MSCMRseg dataset. Other average (stan-
dard deviation) results in Dice score are
from [7, 20]. Ours are based on 5 runs. †:
method with ensemble strategy.
method RV Myo LV avg

upper bound 68.9 (12.0) 72.0 (7.5) 85.7 (5.5) 75.5
baseline 5.7 (2.2) 58.3 (6.7) 49.4 (8.2) 37.8

MixUp [44] 37.8 (15.3) 46.3 (14.7) 61.0 (14.4) 48.4
CutOut [45] 69.7 (14.9) 64.1 (13.6) 45.9 (7.7) 59.9
CutMix [46] 76.1 (10.5) 62.2 (12.1) 57.8 (6.3) 65.4
PuzzleMix [50] 2.8 (1.2) 63.4 (8.4) 6.1 (2.1) 24.1
CoMixUp [47] 5.3 (2.2) 34.3 (6.7) 35.6 (7.5) 25.1
CycleMix [7] 79.1 (7.2) 73.9 (4.9) 87.0 (6.1) 80.0
ShapePU [20] 80.4 (12.3) 83.2 (4.2) 91.9 (2.9) 85.2

TriMix 86.5 (0.6) 83.6 (0.4) 92.2 (0.3) 87.4

TriMix† 87.7 (0.7) 84.7 (0.4) 93.0 (0.2) 88.5

47.5
50.3

88.5 88.8Lunmix
pce

Lunmix
pce + Lmix

pce

Lunmix
pce + Lmix

ce

Lunmix
pce + Lmix

pce + Lmix
ce

Fig. 4. Ablation study on different
loss combinations on the ACDC dataset
with scribble annotations using Dice score.

6 Discussion and Conclusion

This paper seeks to address semi- and scribble-supervised segmentation in a
general way. We provide a hypothesis on a general learner learning from limited
supervision: (i) it should output more accurate predictions and (ii) it should be
trained with consistency regularization under a more challenging perturbation.
We empirically verify the hypothesis with a simple framework. The method,
called TriMix, purely imposes consistency on a tri-training framework under a
stricter perturbation, i.e., combining data augmentation and model diversity.
Our method is competitive with task-specific mainstream methods. It shows
strong potential training with extremely scarce labeled data and achieves new
SOTA performance on two popular benchmarks when learning from sparse an-
notations. We also provide extra evaluations of our method in appendix.

Moreover, as suggested by [64], Deep Ensembles can provide a simple and
scalable way for uncertainty estimation. TriMix maintains triple diverse net-
works, and such nature allows for its efficient uncertainty modeling. It is essen-
tial to estimate and quantify uncertainty for models learned from limited su-
pervision, which is, however, rarely explored. It is also interesting to investigate
whether TriMix can be applied to handle other types of imperfect annotations,
e.g., noise labels [2, 65]. In addition, TriMix’s mechanism is similar to that of the
method BYOL [66], which employs two networks and enforces representation
consistency between them. TriMix may be applicable for self-supervised learn-
ing, but it needs further evaluation. Last but not least, similar to multi-view
co-training [18], TriMix is inherently expensive in computation. To make TriMix
more efficient, we may investigate strategies such as MIMO [67] for TriMix in
the future. The above avenues are regarded as our follow-up works.
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