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Abstract. 3D human pose estimation is a challenging task because of
the difficulty to acquire ground-truth data outside of controlled envi-
ronments. A number of further issues have been hindering progress in
building a universal and robust model for this task, including domain
gaps between different datasets, unseen actions between train and test
datasets, various hardware settings and high cost of annotation, etc. In
this paper, we propose an algorithm to generate infinite 3D synthetic
human poses (Legatus) from a 3D pose distribution based on 10 initial
handcrafted 3D poses (Decanus) during the training of a 2D to 3D hu-
man pose lifter neural network. Our results show that we can achieve
3D pose estimation performance comparable to methods using real data
from specialized datasets but in a zero-shot setup, showing the general-
ization potential of our framework.

Keywords: 3D Human pose - Synthetic training - Zero-shot

1 Introduction

3D Human pose estimation from single images [1] is a challenging and yet very
important topic in computer vision because of its numerous applications from
pedestrian movement prediction to sports analysis. Given an RGB image, the
system predicts the 3D positions of the key body joints of human(s) in the
image. Recent works on deep learning methods have shown very promising results
on this topic [6, 21,26, 48-50]. Current existing discriminative 3D human pose
estimation methods, in which the neural network directly outputs the positions,
can be put into two categories: One stage methods which directly estimate the 3D
poses inside the world or camera space [29,34], or two stage methods which first
estimate 2D human poses in the camera space, then lift 2D estimated skeletons
to 3D [18].

However, all these approaches require massive amount of supervision data to
train the neural network. Contrarily to 2D annotations, obtaining the 3D anno-
tations for training and evaluating these methods is usually limited to controlled

* This work was granted access to the HPC resources of IDRIS under the allocation
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Markov tree & associated joint distributions Synthetic skeleton sampling

Fig. 1. The main idea of our synthetic generation method: use a hierarchic probabilistic
tree and its per joint distribution to generate realistic synthetic 3D human poses.

environments for technical reasons (Motion capture systems, camera calibration,
etc). This brings a weakness in generalization to in-the-wild images, where there
can be more unseen scenarios with different kinds of human appearances, back-
grounds and camera parameters.

In comparison, obtaining 2D annotations is much easier, and there are much
more diverse existing 2D datasets in the wild [3,22,51]. This makes 2D to 3D pose
lifting very appealing since they can benefit from the more diverse 2D data at
least for their 2D detection part. Since the lifting part does not require the input
image but only the 2D keypoints, we infer that it can be trained without any
real ground-truth 3D information. Training 3D lifting without using explicit 3D
ground-truth has previously been realized by using multiple views and cross-view
consistency to ensure correct 3D reconstructions [45]. However, multiple views
can be cumbersome to acquire and are also limited to controlled environments.

In order to tackle this problem, we propose an algorithm which generates infi-
nite synthetic 3D human skeletons on the fly during the training of the lifter from
just a few initial handcrafted poses. This generator provides enough data to train
a lifter to invert 2D projections of these generated skeletons back to 3D, and can
also be used to generate multiple views for cross-view consistency. We introduce
a Markov chain with a tree structure (Markov tree) type of model, following a
hierarchical parent-child joint order which allows us to generate skeletons with
a distribution that we evolve through time so as to increase the complexity of
the generated poses (see Figure 1). We evaluate our approach on the two bench-
mark datasets Human3.6M and MPI-INF-3DHP and achieve zero-shot results
that are competitive with that of weakly supervised methods. To summarize,
our contributions are:

— A 3D human pose generation algorithm following a probabilistic hierarchical
architecture and a set of distributions, which uses zero real 3D pose data.
A Markov tree model of distributions that evolve through time, allowing
generation of unseen human poses.

— A semi-automatic way to handcraft few 3D poses to seed initial distribution.
Zero-shot results that are competitive with methods using real data.
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2 Related work

Monocular 3D human pose estimation. In recent years, monocular 3D human
pose estimation has been widely explored in the community. The models can
be mainly categorized into generative models [2,4,7,24,33,39,47] which fit 3D
parametric models to the image, and discriminative models which directly learn
3D positions from image [1,38]. Generative models try to fit the shape of the en-
tire body and as such are great for augmented reality or animation purpose [35].
However, they tend to be less precise than discriminative models. On the other
hand, a difficulty that the discriminative models have is that depth information
is hard to infer from a single image when it is not explicitly modeled, and thus
additional bias must be learned using 3D supervision [25,26], multiview spatial
consistency [13,45,48] or temporal consistency [1,9,23]. Discriminative models
can also be categorized into one stage models which predict directly 3D poses
from images [14,25,29,34] and two stage methods which first learn a 2D pose
estimator, then lift the obtained 2D poses to 3D [18,28, 45,48, 49,52]. Lifting
2D pose to 3D is somewhat of an ill-posed problem because of depth ambiguity
ambiguity. But the larger quantity and diversity of 2D datasets [3,22,51], as well
as the already achieved much better performance in 2D human pose estimation
provide a strong argument for focusing on lifting 2D human poses to 3D.

Weak supervision methods. Since obtaining precise 3D annotations of human
poses are hard due to technical reasons and are mostly limited to controlled
environments, many research proposals tackled this problem by designing weak
supervision methods to avoid using 3D annotations. For example, Igbal et al. [18]
apply a rigid-aligned multiview consistency 3D loss between multiple 3D poses
estimated from different 2D views of the same 3D sample. Mitra et al. [30] learn
3D pose in a canonical form and ensure same predicted poses from different
views. Fang et al. [13] propose a virtual mirror so that the estimated 3D poses,
after being symmetrically projected into the other side of the mirror, should also
look correctly, thus simulating another way of ‘multiview’ consistency. Finally,
Wandt et al. [15] learn lifted 3D poses in a canonical form as well as a camera
position so that every 3D pose lifted from a different view of a same 3D sample
should still have 2D reprojection consistencies. For us, in addition to 3D supervi-
sion obtained from our synthetical generation, we also use multiview consistency
to improve our training performance.

Synthetic human pose training. Since the early days of the Kinect, synthetic
training has been a popular option for estimating 3D human body pose [410]. The
most common strategy is to perform data augmentation in order to increase the
size and diversity of real datasets [16]. Others like Sminchisescu et al. [13] render
synthetically generated poses on natural indoor and outdoor image backgrounds.
Okada et al. [32] generate synthetic human poses in a subspace constructed
by PCA using the walking sequences extracted from the CMU Mocap dataset
[19]. Du et al. [12] create a synthetic height-map dataset to train a dual-stream
convolutional network for 2D joints localization. Ghezelghieh et al. [15] utilize
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3D graphic software and the CMU Mocap dataset to synthesize humans with

different 3D poses and viewpoints. Pumarola et al. [36] created 3DPeople, a
large-scale synthetic dataset of photo-realistic images with a large variety of
subjects, activities and human outfits. Both [11] and [25] use pressure maps as

input to estimate 3D human pose with synthetic data. In this paper, we are only
interested in generating realistic 3D poses as a set of keypoints so as to train
a 2D to 3D lifting neural network. As such, we do not need to render visually
realistic humans with meshes, textures and colors for this much simpler task.

Human pose prior. Since the human body is highly constrained, it can be lever-
aged as an inductive bias in pose estimation. Bregleret al. [8] use kinematic-chain
human pose model that follow the skeletal structure, extended by Sigal et al. [42]
with interpenetration constraints. Chowet al. [10] introduced Chow-Liu tree, the
maximum spanning tree of all-pairwise-mutual-information tree to model pairs of
joints that exhibit a high flow of information. Lehrmannet al. [20] use a Chow-Liu
tree that maximize an entropy function depending on nearest neighbor distances
and learn local conditional distributions from data based on this tree structure.
Sidenblahnet al. [41] use cylinders and spheres to model human body. Akhter et
al. [2] learn joint-angle limits prior under local coordinate systems of 3 human
body parts as torso, head,and upper-legs. We use a variant of kinematic model
because the 3D limb lengths are fixed no matter the view, which can facilitate
the generation process of synthetic skeleton.

Cross dataset generalization. Due to the diversity of human appearances and
view points, cross-dataset generalization has recently been the center of attention
of several works. Wang et al. [16] learn to predict camera views so as to auto-
adjust to different datasets. Li et al. [21] and Gong et al. [16] perform data
augmentation to cover the possible unseen poses in test dataset. Rapczynski et
al. [37] discuss several methods including normalisation, viewpoint estimation,
etc., for improving cross-dataset generalization. In our method, since we use
purely synthetic data, we are always in a cross-dataset generalization setup.

3 Proposed method

The goal of our method is to create a simple synthetic human pose generation
model allowing us to train on pure synthetic data without any real 3D human
pose data information during the whole training procedure.

3.1 Synthetic human pose generation model

Local spherical coordinate system. Without loss of generalization, we use
Human3.6M skeleton layout shown in Figure 2 (a) throughout the paper. To
simplify human pose generation, we set the pelvis joint (joint 0) as root joint and
the origin of the global Cartesian coordinate system from which a tree structure
is applied to generate joints one by one. We suppose that the position of one joint
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Fig. 2. (a) The 17-joint model of Human3.6M that we use (b) The parent-child joint
relation graph. With parent joint’s coordinate as origin of local spherical coordinate
system, it generates child joint’s position. (¢) The parent-child p, 6 , ¢ relation
graph. With parent joint’s p, 6 , ¢ information, it samples child joint’s p, 8 , ¢. (d) An
example of how child joint is generated with sampled p, 6 , ¢ from relationship in (c)
under the local spherical coordinate system with it’s parent joint in (b) as origin.

depends on the position of the joint which is directly connected to it but closer (in
geodesic meaning) to the root joint. We call this kinematic chain parent-child
joint relations, as shown in Figure 2 (b). With this relationship, we propose to
generate the child joint in a local spherical coordinate system (p, 8, ¢) centered
on its parent joint (see Figure 2 (d)). The p, 8 , ¢ values are sampled with
respect to a conditional distribution P(Zchiia|Tparent). This produces a Markov
chain indexed by a tree structure which we denote as a Markov Tree.

Our motivation to use a local spherical coordinate system for joint generation
is that each human body branch has a fixed length p no matter the movement.
Also, since the supination and the pronation of the branches are not encoded
in skeleton representation, the new joint position can be parameterized with
polar angle 6 and azimuthal angle ¢. Furthermore, by using an axis system
depending on ’grandparent-parent’ branch instead of global coordinate system,
the possible angle interval of § and ¢ achieved by human is more limited than
in a global coordinate system. Finally, our local spherical coordinate system is
entirely bijective with global coordinate system.

Hierarchic probabilistic skeleton sampling model. Generating a human
pose in our local spherical coordinate system is equivalent to generating a set
of (p,0,9). We thus propose to sample these values from a distribution that
approximate that of real human poses. To retain plausible poses, we limit the
range of (p,d,¢) for each joint based on what is on average biologically achievable.

Since body joints follow a tree-like structure, it is unlikely that sampling each
joint independently of the others leads to realistic poses. Instead, we propose to
model the distribution of the joints by a Markov chain index by a tree following
the skeleton, where probability of sampling a tuple (p,0,¢) for a joint depends
on the values sampled for its parent. More formally, denoting a child joint ¢ and
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its parent p(c) following the tree structure, we have:

(pcv 967 (rbC) ~ P((p, 97 ¢)|(pp(c)7 Hp(c)a ¢p(c))) (1)

Please note that the tree structure used for accounting the dependencies between
joints as shown on Figure 2 (c) is slightly different than the kinematic one. We
found in practice that it is better to condition the position of one shoulder on
the position of the same side hip, and to condition symmetrical shoulder/hip
on their already generated counterpart rather than on their common parent.
Intuitively, this seems to better encode global consistency.

To facilitate modeling distribution P((p, 8, ¢)[(pp(c), Op(c)> Pp(c))), We make
further assumption that all 3 components only depend on their parent counter-
parts. More formally:

Pc ™~ P(p‘pp(c))a 9(: ~ P(0|9p(c))7 d)c ~ P(¢‘¢p(c)) (2)

This allows us to model each distribution with a simple non-parametric model
consisting of a simple 2D histogram representing the probability of sampling, e.g.,
pe knowing the value of p,). In practice, we use 50 bins histograms for each
value, totalling to 3 x 16 = 48 2D histograms of size 50 x 50. When there is no
ambiguity, we use the same notation P(-|-) for the histogram and the probability.

3.2 Pseudo-realistic 3D human pose sampling

The next step is to estimate a distribution that can approximate the real 3D
pose distribution, and from which our model can sample, so that the generated
poses look like real human actions. Under the constraint of zero-shot 3D real
data, we choose to make breakthrough by looking at limited amount of 2D real
poses and 'manually’ lift them into 3D to make our distribution. However, it is
impossible for us to tell the exact depths of keypoints from an image with our
eye, and it is also a huge amount of work to do if we check a lot of images one
by one. Instead, we choose a 3-step procedure to get our handcrafted 3D pose:

High-variance 2D poses. We randomly sample 1000 sets of 10 2D-human
poses from the target dataset (e.g., Human3.6M). We then compute the total
variance for each set and pick the sets with largest variance as our candidates.
This ensure our initial pose set has high diversity.

Semi-automatic 2D to 3D seed pose lifting. Next, we use a semi-automatic
way to lift samples in each seed set to 3D. The idea is as follows: from an image
for which we already know the 2D distances between connected joints, and if we
can estimate the 3D length of each branch who connects the joints as well as the
proportion Aprop between the 2D length in the image (in pixel) and the 3D length
(in centimeter), we can estimate the relative depth between connected joints
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using Pythagorean theorems under the assumption that the camera produces
an almost orthogonal projection. The ambiguity about the sign of these depths,
which decide if one joint is in front of or in the back of its parent joint, can easily
be manually annotated.

To estimate the 3D length, we define a set of fixed value representing branch
lengths (||c—p(c)||2, Ye except the root joint) of the human body based on biolog-
ical data. Since we later calculate under a proportionality assumption between
3D and 2D, we only need it to roughly represent the proportionality between
different human bone length. We also manually annotate sign. for each keypoint
¢, denoting if it is relatively further or closer to the camera compared to its par-
ent joint p(c). Finally the 2D-3D size proportion \p,., is calculated under the
assumption that the 3 joints around the head (head top, nose and neck) form
a triangle of known ratio which is independent of rotation and view, visually
shown in Figure 3. This is reasonable since there are no largely moving articu-
lated part in this triplet. We choose AB = 1 the unit length and we suppose the
proportion between AB, BC and C'A is fixed (BC = aAB,AC = SAB). Noting

dgp = B'B—A’A and dc = C'C — A’ A, for the 2D skeleton we know A’B’,B'C’
and A’C’, then we have 3 unknown variables dg, dc, and Aprop = %

and 3 equations:

A'B’ A'C
T = (8AB) - (5
prop prop

(ds — de)? = (aABy — (2 3)

)‘PT op

d%}:AB27( )27

Then we can solve \p.p. In practice, we set o = 1 and 5 = 5/3.

After obtaining these depths, we apply Pythagorean theorem to get the final
depth value of all joints with the kinematic order. Examples of semi-automatic
lifted 3D poses are shown on Figure 4. Since there are only a few keypoints to
label as in front of or behind their parent joint, the labeling process is very easy
and takes about 3 minutes per image only.

c o c
A ® ot ,
(a) (b)

Fig. 3. (a) 3D poses (red A,B and C, unit in centimeters) of 3 joints of the head
projected onto 2D camera plan (blue A’,B’ and C’, unit in pixels). (b) same but right
side view after 90° rotation.
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Fig. 4. A example of a set of 10 semi-automatic lifted 3D poses. This set of seeds is also
the one which produce our best score on Human3.6M dataset. These 10 lifted samples
have a 79.42mm MPJPE error compare to the groundtruth.

Distribution diffusion We then transform 3D poses into the local spherical
coordinate system and used each seed set as initial distribution to populate
the histograms. Since the sampling of a new skeleton follows the Markov tree
structure and different limbs have a weak correlation between them in our model,
it is possible to sample skeletons that look like combinations of the original 10
samples within the seed set.

However, these initial samplings are by no mean complete, and we run the risk
of overfitting the lifter network to these poses only. To alleviate this problem, we
introduce a diffusion process among each 2D histogram such that the probability
of adjacent parameters is raised over time. More formally:

P(xc|-rp(c))t+1 = P(mc|xp(c))t + achP(xc‘xp(c))ta HAES {paea(b} (4)

where A is the Laplacien operator and «,, is the diffusion coefficient. This idea is
derived from the heat diffusion equation in thermodynamics, in which bins with
a higher probability diffuse to their neighbours (Laplacian operator), making the
generation process more and more likely to generate samples out of initial bin.

The main reason behind our diffusion process is that of curriculum learning
[5]. At first, the diversity of sampled skeletons is low and the neural network
is able to quickly learn how to lift these poses. At later stage, the diffusion
process allows the sampling process to generate more diverse skeletons that are
progressive extensions of the initial pose angles, avoiding overfitting the original
poses. We show in Figure 5 an example of evolution of the histogram and increase
of generation variety through diffusion.

3.3 Training with synthetic data

The training setup of 2D-3D lifter network [,, is shown on Figure 6 and consists
of 3 main components: (1) Sampling a batch of skeletons at each step ; (2)
sampling different virtual cameras to project the generated skeletons into 2D
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Fig. 5. First row is an example of the distribution histogram of a joint after 0, 200,
1000 and 3000 steps of diffusion. Second row shows an example of slightly increased
generation variety when sampling from a single bin and generating 10 samples each
time after 0, 200, 1000 and 3000 steps of diffusion.

Algorithm 1 Sampling algorithm

Require: True distribution P, empirical distribution F.;
bins < where P, >0 and P. < P,
b ~ U(bins)
return Random sample from b

; and finally (3) the different losses used to optimize l,,. In practice, I, is a
simple 8-layer MLP with 1 in-layer, 3 basic residual blocks of width 1024, and 1
out-layer, adapted from [45].

When sampling a new batch of skeleton using our generator, we have to keep
in mind that the distribution of the generator varies through time because of
the diffusion process introduced in Equation 4. To avoid over-sampling or under-
sampling bins with low density, we propose to track the amount of skeletons that
have been generated in each bin and adjust the sampling strategy accordingly.
More formally, let us denote P; the true distribution obtained by Equation 4,
and P. the empirical distribution obtained by tracking the generation process.
The corrected sampling algorithm is shown in Algorithm 1 and basically selects
uniformly a plausible bin (P, > 0) that has not been over-sampled (P. < P;).
The whole generation process simply loops over all joints using the Markov tree
and is shown on Algorithm 2.

At initialization, we sample 5000 real 2D poses, compute the proportion of
nearest neighbour within each pose seed, and use it to initialize the histogram
to give more importance to more frequent poses.

Regarding the projection of the batch into 2D, we propose to sample a set of
batch-wise rotation matrices Ry . n, mostly rotating around the vertical axis,
to simulate different viewpoints. Then, the rotated 3D skeletons are just simply:
Xspi = RiXspo, @€ {l,...,N}, with X3p ¢ being the original skeleton in
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Algorithm 2 Pose generation algorithm
Require: True distribution P;, empirical distribution P., Markov tree structure T,
sampling algorithm S

X 0(s3) > 3=p,0, ¢

for i € p,0,¢ do > root joint
X[0,4] < S( P:(Xo), P-(Xo))

end for

for (p,c) in T' do > parent-child relations in T’

for i € p,0,¢ do
Xle,i] = S(Pi(X(e,i)| X (p.i)), Pe(
Update P.( )
end for
end for
return X in Cartesian coordinates

)

global Cartesian coordinates. To simulate the cameras, we follow [15] and use a
scaleless orthogonal projection:
WXsp,i (1 0 0)
X2D = T W = ) 5
T W Xspalle 010 (5)
where W is the orthogonal projection matrix and || - || is the Frobenius norm.

Normalizing by the Frobenius norm allows us to be independent of the global
scale of Xyp ; while retaining the relative scale of each bone with respect to each
other. In practice, we found that uniformly sampling random rotation matrices
at each batch renders the training much more difficult. Instead, we sample view
with a small noise around the identity matrix and let the noise increase as the
training goes on to generate more complex views at later stages.

Finally, to train the network, we leverage several losses. First, since we have
the 3D ground-truth associated with each generated skeleton:

»CSD:% Z

i=1..N

X3D,i . XBD i
| Xspillr  [XspillF

(6)

with )A(3D7i = l,(X2p,;) being the output of the lifter l,,, and || - ||; the ¢; norm.
3D skeletons are normalized before being compared because the input of the lifter
is scaleless and as such it would make no sense to expect the lifter to recover
the global scale of X3p. Then, we use the multiple views generated thanks to
R; to enforce a multiview consistency loss. Calling XQD i = WER; R X3D i
the projection of the lifted skeleton from view i into view j, we optimize the
cross-view projection error:

Lap = N2 ZZ

i=1 j=1

Xop.ij Xap,j
1 Xopisle 1 Xenlle

(7)

The global synthetic training loss we use is the following combination:

L=Lop+ A3pLsp (8)

2857



Synthetic training for 2D-3D human pose lifting 11

Lsp

r~R (i | &
} f 7 {/_lw_ ‘ F H‘ 2,
z~ P‘{gp,quﬁ — ({ — % ‘V / 1".\} ‘ T S ‘
G e o / : .
‘ e ¢ ‘ Lon N

9pp.6: synthetic pose generator T scaleless 2D projection [,,: 3D pose lifter ..L..: losses

!

i
i

¢
— 3 : —:,:—W‘—

4

Fig. 6. Our whole training process with synthetic data. Our generator g generates a
3D human pose following given distributions P of p, 6 and ¢. It will be applied with
multiple different random generated r to project into different camera view. Projector
W will projects them into scaleless 2D coordinates and they are the network inputs.
The output estimated 3D poses will be applied with scaleless 3D supervision loss Lsp,
and also cross-view scaleless 2D reprojection loss L2p, which rotate estimated 3D pose
from one view to another with known r and apply 2D supervision after projection W.

4 Experiments

4.1 Datasets

We use two widely used dataset Human3.6M [17] and MPI-INF-3DHP [29] to
quantitatively evaluate our method.

We only use our generated synthetic samples for training and evaluate on
S9 and S11 of Human3.6M and TS1-TS6 on MPI-INF-3DHP with their com-
mon protocols. In order to compare the quality of our generated skeletons with
real 2D data, We also use the COCO [22] and MPII [3] datasets to check the
generalizability of our method with qualitative evaluation.

4.2 Evaluation metrics

For the quantitative evaluation on both Human3.6M and MPI-INF-3DHP we
use MPJPE, i.e. the mean euclidean distance between the reconstructed and
ground-truth 3D pose coordinates after the root joint is aligned (P1 evaluation
protocol of Human3.6M dataset). Since we train the network with a scaleless loss,
we follow [45] and scale the output 3D pose’s Forbenius norm into the ground-
truth 3D pose’s Forbenius norm in order to compute the MPJPE. We also report
PCK, i.e. the percentage of keypoints with the distance between predicted 3D
pose and ground-truth 3D pose is less or equal to half of the head’s length.

4.3 Implementation details

We use a batch-size of 32 and we train for 10 epochs on a single 16G GPU
using Adam optimizer and a learning rate of 10~%. We set the number of views
N = 4 and the total number of synthetic 2D input samples for each epoch is the
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Weak supervision Synthetic training Ours
(8] o] [ |21 [15]  [12]  [44] | 10 sets best run
H36M|MPJPE(|| 67.4 120.95 65.9 [106.8 > 78.13 126.47 111.6(95.4+13.5 60.8
3DHP MPJPE]|109.3 - 104.0] - - - - [148.4+£7.6 1328
PCKt |79.5 - 70| - - - - | 57.7£2.3 619

Table 1. Comparison of our results with the state-of-the-arts under the common pro-
tocol 1 on Human 3.6M and MPI-INF-3DHP. The value before and after + symbol are
mean and standard deviation values.

same as the number of H36M training samples to make a fair comparison. The
distribution diffusion coefficient a, is a joint-wise loss dependent value, set to
1075 x 1019€1/(10xN) where L is the joint-wise difference between loss of the last
batch and the current batch, and the rotation R are sampled with a noise that
increases in m after each step, with #batch the number of elapsed batches
in the current epoch. For the loss, Asp = 0.1 is set empirically. To account for
the variation due to the selection of the 2D pose using total variance, we keep
the 10 sets with highest variance and show averaged results. Our method trains
on about 100k generated samples per hour on a V100 GPU, whereas inference
time for lifting is negligible.

4.4 Comparison with the state-of-the art

We compare our results with the state-of-the-art methods with synthetic su-
pervision for training in Table 1. We present several weak supervision methods
which also do not use real 3D annotations, and instead use other sort of real data
supervision whereas we do not. We can see that our method outperforms these
synthetic training methods and achieves the performance on par with weakly
supervised methods on H36M, while never using a real example for training.
We show qualitative results on the COCO dataset on Figure 7. Since the
COCO layout is different from that of H36M, we use a linear interpolation of
existing joints to localize the missing joints. We can see that our model still
achieves good qualitative performances on zero shot lifting of human poses in the
wild (first 2 rows). Failed predictions (last row) tend to bend the legs backward
even when the human is standing still, which may be a bias of the generator.

5 Ablation studies

5.1 Synthetic poses realism

We want to see how similar our synthetic skeletons are to real skeletons. Quali-
tatively we compare our distribution after diffusion with the distribution of the
whole Human3.6M and MPI-INF-3DHP datasets, for some of the joints as shown
in Figure 8. We can see that, even though there are many poses in MPI-INF-
3DHP have never appear in Human3.6M, the distributions of angles 6§ and ¢ of
these two real datasets have very similar shapes, which means our local spherical
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Fig. 7. Example of zero shot lifting in the wild on images from the COCO dataset.
The first row are visually correct prediction, while the last row presents ’failure’ cases,
mostly due to right leg learnt a bias of leaning backward.
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Fig. 8. Left: Examples of distributions of angle 6 and ¢ from same parent-child pairs
computed on Human3.6M, MPI-INF-3DHP, and our diffusion process. Right: Precision
and recall evaluated with 5k generated samples and 5k real 2D samples from h36m.

coordinate system successfully models the invariance of the biological achievable
human pose angles and their frequencies which are independent of camera view
point. Our seeds+diffuse strategy produces a Gaussian mixture which succeed
in covering big parts of real dataset’s distribution.

Quantitatively we apply a precision/recall test, as is common practice with
GANSs [31]. We sample 5000 real and 5000 synthetic poses and project them to
2D plane using the scaleless projection in 5 and the Euclidean distance. Precision
(resp. Recall) is defined as percentage of synthetic samples (resp. real samples)
inside the union of the balls centered on each real sample (resp. synthetic sample)
and with a radius of the distance to its 10-th nearest real sample neighbor (resp.
synthetic sample neighbor). In our case, we already know that most synthetic
skeleton generated by our Markov tree are biologically possible thanks to the
limits in the generation intervals. As such, we are more interested in a very high
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Method Labeled training data MPJPE]
CLIFF (ECCV22) H36m + 3DHP + COCO + MPII + 3DPW 52.8
DynaBOA (TPAMI22) H36m + 3DPW 65.5
ours 24 samples from 3DPW 61.09 £+ 2.16

Table 2. Results on the 24-keypoint SMPL model, compared to the state-of-the-art

recall so as to not miss the diversity of real skeletons. All our seed sets have
more than 70% recall and highest one achieves 91.8% recall. The precision, on
the other hand, is around 40%, with 47.1% as the highest, which is still good
considering we only start with 10 manually lifted initial poses for each seed.

5.2 Effect of diffusion

We want to see why diffusion process is essential to our method. We take respec-
tively 1, 10, 100, 1000 and 10000 samples of 3D poses on Human3.6M dataset as
initial seed to make distribution graphs, and apply our 2D precision recall test
after diffusion process. The result is shown in Figure 8. We can see that diffusion
generally increase recall value at the cost of precision value. The distribution us-
ing 1 samples as seed is much worse with the others in recall which means it can
only cover around 60% of samples from real dataset even with diffusion process,
while the distribution using 100 samples or more are close in performances. The
diffusion process can reduce the gap between the distribution using 10 samples as
seeds and those using 100 or more samples, which is important to us considering
we want to avoid handcrafting a lot of initial poses.

5.3 Layout adaptation

We show that our synthetic generation and training method also work on a
different keypoint layout by applying the whole process on a newly defined hi-
erarchic Markov tree based on 24 keypoints of SMPL model [24] and evaluating
on 3DPW dataset [27]. We use 24 samples from its training set (one frame from
each video) using our 2D variance based criterion for the seeds. Since our training
method is scaleless, we rescale the predicted 3D poses by the average Forbenius
norm of the 24 samples in the seed. The average MPJPE of 10 different seeds is
shown in Table 2. This validates the generalization capability of our method.

6 Conclusion

We present an algorithm which allows to generate synthetic 3D human skeletons
on the fly during the training, following a Markov-tree type distribution which
evolve through out time to create unseen poses. We propose a scaleless multiview
training process based on purely synthetic data generated from a few handcrafted
poses. We evaluate our approach on the two benchmark datasets Human3.6M
and MPI-INF-3DHP and achieve promising results in a zero shot setup.
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