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Abstract. Recently, transformers have made great success in computer vision.
Thus far, most of those works focus on high-level tasks, e.g., image classification
and object detection, and fewer attempts were made to solve low-level problems.
In this work, we tackle image super-resolution. Specifically, transformer architec-
tures with multi-granularity transformer groups are explored for complementary
information interaction, to improve the accuracy of super-resolution. We exploit
three transformer patterns, i.e., the window transformers, dilated transformers and
global transformers. We further investigate the combination of them and propose
a Multi-granularity Transformer (MugFormer). Specifically, the window trans-
former layer is aggregated with other transformer layers to compose three trans-
former groups, namely, Local Transformer Group, Dilated Transformer Group
and Global Transformer Group, which efficiently aggregate both local and global
information for accurate reconstruction. Extensive experiments on five bench-
mark datasets demonstrate that our MugFormer performs favorably against state-
of-the-art methods in terms of both quantitative and qualitative results.

1 Introduction

Single Image Super-resolution (SISR) is a low-level computer vision task where high-
resolution (HR) images are recovered from their low-resolution (LR) counterparts. It
often serves as an important pre-processing or intermediate step in many computer vi-
sion techniques to solve other problems, e.g., Semantic Segmentation [36], Object De-
tection [15] and Text Recognition [39]. As one LR input can be associated with multiple
HR images, SISR is an ill-posed problem.

Early methods of SISR rely on interpolation (e.g., bicubic interpolation and dis-
crete wavelet transform) and regularisation. In the past decade, convolutional neural
networks (CNNs) have become the standard model for computer vision tasks due to
their representational capability. Many CNN based SISR methods [21][49][48] have
been proposed. These techniques learn a non-linear mapping between LR input and
HR output; outperform traditional methods by a large margin. However, convolution
operations are limited to information processing in local neighborhood, restricting the
capability of CNN-based models to capturing long-range relationships among pixels,
which could provide important internal prior for this task.

Another series of techniques combine Non-local Attention with CNN models to
achieve SISR [21][48][27][26]. In RNAN [48], each attention block contains one trunk
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branch and one local mask branch which concentrate on local structures and long-range
dependencies respectively. CSNLN [27] studies cross-scale feature correlation of im-
ages by learning to mine long-range dependencies between LR features and larger-scale
HR patches. However, limited by the computational cost of Non-local attention, those
methods are typically inefficient and hard to deploy.

Transformer [34] models have been dominating the field of natural language pro-
cessing and many studies have demonstrated their ability on vision problems [13][3][33].
For instance, Swin Transformer [23] outperforms state-of-the-art methods by a large
margin on image classification, object detection and segmentation. Inspired by the suc-
cess of vision transformer, some recent works also apply them to low-level vision
tasks [5][19][42][50]. Among them, IPT [5] is the pioneering work in which a stan-
dard transformer architecture is utilized; aiming at solving multiple restoration prob-
lems with large-scale pre-training. Uformer [42] and SwinIR [19] are built on Swin
Transformers. The former combines a Swin Transformer with Unet [30], while the lat-
ter leverages deep residual connections [20][41][49] to stack several Swin Transformer
layers inside each residual block. Although these methods achieve robust results on a
series tasks including image super-resolution, image denoising and deraining, directly
applying transformers to SISR still has some limitations. (1) The receptive field of lo-
cal self-attention is restricted to a patch window, preventing the model from building
long-range dependencies. (2) Although global self-attention is able to capture context
of arbitrary distances, the computational cost can hardly be afforded.

In this work we propose a novel transformer-based method, named Multi-granularity
Transformer (MugFormer), which efficiently aggregate both local and global informa-
tion in an image to enhance details while maintaining relatively low computational
cost. Specifically, a MugFormer block, the major component of the model, is composed
of three groups of transformer layers, i.e., Local Transformer Groups (LTGs), Dilated
Transformer Groups (DTGs) and Global Transformer Groups (GTGs). An LTG com-
prises a Window Transformer Layer and a shifted Window Transformer Layer. The
Window Transformer Layer computes self-attention among pixels within a local neigh-
borhood, hence the LTGs are able to aggregate sufficient local information. In a DTG,
the shifted Window Transformer Layer is replaced by a Dilated Transformer Layer
which is able to capture long-distance relationship among pixels, hence able to aggre-
gate non-local information in a larger range. A GTG consists of a Window Transformer
Layer and a Global Transformer Layer. In the Global Transformer Layer, self-attention
is computed based on patches instead of pixels, i.e., both queries and keys are computed
features for patches. In this way, the GTGs can efficiently integrate information at larger
scale from the whole image. By stacking several MugFormer blocks, the model is able
to make full use of external and internal priors to recover details in an image. A series
of ablative models are designed and compared to demonstrate the effectiveness of the
proposed method. In the comparisons with state-of-the-art methods, it shows favorable
performance against them.

In summary, the main contributions of our work are three-fold:

– We propose three transformer groups, i.e., Local Transformer Group (LTG), Di-
lated Transformer Group (DTG) and Global Transformer Group (GTG), which are
capable of capturing context of different ranges for accurate image SR.
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Fig. 1. The architecture of the proposed MugFormer. (a) is the structure of a Multi-granularity
Transformer Block and (b) shows the detailed components inside a Local Transformer Group.

– We analysis the characteristics of transformer block and explore the complementar-
ity between them. Exhaustive experiments demonstrate that our arrangement, i.e.,
from local to global could obtain optimal results.

– Our Multi-granularity Trans-former (MugFormer) outperforms the state-of-the-art
methods on multiple image SR benchmarks.

2 Related work

2.1 Image Super-resolution

The rapid development of digital devices has increased the demand for high-quality
graphics. Image restoration algorithms are often used on edge devices to overcome
optical hardware bottlenecks. Early approaches are model-based which formulate im-
age restoration as optimization problems [14][12]. Recently, convolutional neural net-
works have been applied to image restoration and inspired many leaning-based ap-
proaches [11], the results of which are much better than the model-based ones. Dong
et al. [11] first proposed to solve image super resolution. In [18][20][49], deep residual
and dense connections are exploited to learn hierarchical features for more effective
representation. Considering that images might fall into uneven distribution, some re-
cent works [49][27][51][26] use attention mechanisms to focus learning on challenging
areas and capture realtionships across longer distances. Syed et al. [45] proposed a
multi-scale architecture which extracts and aggregates spatially-precise information in
high-resolution and contextual information in low-resolution simultaneously. In [26],
deep feature pixels are partitioned into groups and then attention is only calculated
within the group, which significantly reduces the computational cost while forcing the
module to focus on informative area.

2.2 Vision Transformer

Transformer [34] was first applied on natural language processing (NLP) tasks [10][29].
Motivated by the success of transformers in NLP, a variety of transformer models have
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been proposed to solve visual tasks, e.g., image classification [13][33][8], object detec-
tion [3][52] [?], image segmentation [35][43] and video understanding [1]. Seminally,
ViT[13] first uses stacked transformer encoders to classify images. To do this input im-
ages are partitioned into non-overlapping patches which are used as tokens. This adap-
tation of transformers surpasses state-of-the-art convolutional architectures on image
classification. However, the astonishing performance of this work is due to a hyper-
scale training dataset(JFT-300M). Touvron et al. [33] introduced an additional distil-
lation token with hard-label distillation that achieves comparable results when training
on much smaller datasets(ImageNet-1K). Some recent works[38][37][?][7] focus on
general backbone design, leading to more flexibility in downstream tasks, e.g., object
detection and semantic/instance segmentation.

Inspired by the successful adaptations of transformers to vision task, several works
have applied transformers to image restoration [5] [42][19]. IPT [5] aims to solve dif-
ferent restoration problems with a multi-task transformer framework. Controversially,
IPT is pre-trained on ImageNet and its performance is influenced more by training
data quantity than network architecture. Uformer [42] explores several designs which
combine window self-attention [23] with UNet [30]. SwinIR [19] stacks window trans-
former blocks into a deep network. However, both Uformer and SwinIR calculate self-
attention in non-overlapping windows, failing to capture patterns between distant to-
kens. These studies apply traditional transformer blocks to image restoration tasks with-
out modification. In this work, we analyse the characteristics of transformer structures
and how they relate to image SR. From this we propose a multi-granularity transformer
architecture for image SR.

3 Methodology

In standard transformers the computational complexity of self-attention grows quadrat-
ically with input size, which becomes a serious problem when applied to image restora-
tion tasks. Image restoration tasks such as image super-resolution often require high
resolution images as inputs for decent performance, making the application of self-
attention computationally infeasible. Window-based self-attention [23] is utilized in
SwinIR [19] and Uformer [42] to achieve trade-offs between accuracy and computa-
tional complexity. However, window-based self-attention limits feature extraction to a
local receptive field. Although shifted window partitioning and layer stacking help ex-
panding the receptive field of a window, interactions among distant elements in the in-
put fail to be modelled, especially for high-resolution inputs. In this work, we propose
multi-granularity transformer blocks which are able to extract local information and
global context in a unified network. The multi-granularity transformer block is com-
posed of three transformer groups with different granularity, i.e., Local Transformer
Group, Dilated Transformer Group and Global Transformer Group. Each transformer
group captures different patterns of texture from local to global which complement one
another.
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3.1 Overview

The overall pipeline of our proposed MugFormer is shown in Fig. 1. It is composed of
three main parts: a shallow CNN stem, a multi-granularity feature enhancement module
and an upsampling module. Following the practices of previous work [20][47][19], a
single convolutional layer is used to extract shallow features:

F0 = HSF (I); (1)

where F0 2 RH�W �C and I 2 RH�W �C0 are the extracted shallow features and input
image respectively. HSF (�) is a 3 � 3 convolutional layer. F0 is then fed to a more
powerful feature extraction module, producing feature maps FHF 2 RH�W �C as

FHF = HMF (F0); (2)

where HMF (�) is the multi-granularity feature enhancement module, which is formed
by stacking K Multi-granularity Transformer Blocks (MGTBs). The feature extraction
procedure of k-th MGTB can be described as

Fk = HMGT Bk
(Fk�1) = HMGT Bk

(HMGT Bk�1
(: : : H1(F0) : : : ));

(3)

where MGTBk(�) is the k-th MGTB, Fk�1 and Fk represent the input and output
respectively. At the end of each MGTB we attach a convolutional layer with structured
inductive bias after the transformers. Due to the important role of skip connections in
both CNNs [49] and transformers [34], they are also adopted here to stabilise training
and promote information propagation:

FHD = HCONV (FK) + F0; (4)

where HCONV represents a 3� 3 convolutional layer and FHD is the output of the last
MGTB. The specific design of Multi-granularity Transformer Block will be detailed
later in Sec. 3.2. Finally, the high-resolution output IHR is obtained via the reconstruc-
tion module as

IHR = HREC(FHD); (5)

where HREC(�) represents the reconstruction operation which first upsamples features
via a sub-pixel layer [31] and then produces the final super-resolution result with an ad-
ditional convolutional layer. The network is trained end-to-end with L1 reconstruction
loss.

3.2 Multi-granularity Transformer Block

Recent works [7][4][44] has demonstrated that using both global and local informa-
tion in transformer models helps achieving better performance. Motivated by them,
we further explore the interaction of tokens in transformers. Specifically, we examine
three patterns, i.e., window transformers, dilated transformers and global transformers.
As shown in Fig. 1(a), a MGTB is composed of a Local Transformer Group, a Dilated
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(a) WSA (b) S-WSA

(c) C-WSA (d) GSA

Fig. 2. Schematic views of the Self-attentions used in the proposed three transformer groups.

Transformer Group, a Global Transformer Group and a convolutional layer. Each group
contains two consecutive transformer layers and one convolutional layer is added before
the residual connection.
Local Transformer Group. Motivated by previous work which reduce the computa-
tional cost of transformers by executing self-attention calculation within non-overlapped
windows [23], we follow the practice of Swin Transformer [23] to build our Local
Transformer Group, which is composed of Window Transformer Layer and shifted Win-
dow Transformer Layer. As shown in Fig. 2(a), window self-attention (WSA) evenly
divides an input of size H �W � C into HW

M2 windows, each of which corresponds to
an M �M patch. Self-attention is computed for all pixels in local neighborhood. Thus,
the computational cost of the self-attention isO(4HWC2 +2HWCM2). This modifi-
cation makes computation linear with respect to input resolution rather than quadratic,
which is the case in standard self-attention O(H2W 2C). In a separated window, the
details of MSA can be formulated as

MultiHead(Q;K; V ) = Concat(H0; ; :::Hn)WO; (6)

Headj = Attention(QWQ
j ;KW

K
j ; V WV

j ); (7)

whereQ;K; V 2 Rn�d are the embeddings of key, query and value, andWO 2 RC�C ,
WQ

j 2 RC�d,WK
j 2 RC�d and WV

j 2 RC�d are linear projection matrices. n repre-
sents number of heads in the attention layer and d, which is equal to C

n , is the dimension
of each head. Previous work added relative positional bias to each head which changes
the attention map representation to:

Attention(Q;V;K) = Softmax(QKT =
p
d+B)V; (8)

whereQ;K; V 2 RM2�d denote the query, key and value in the self-attention module
respectively; d is the dimension of query and key. B 2 RG2�G2

is a relative positional
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bias matrix. In our task, the sizes of testing images and training images are inconsistent
and using a fixed-sized matrix will result in sub-optimal performance [8]. Thus, we
adopt dynamic positional bias(DPB) [40] of which the relative position bias is generated
dynamically via MLPs.

As shown in Fig. 1(b), window self-attention (WSA) is followed by a feed-forward
network (FFN) composed of two Linear layers using ReLU as an activation function.
Layer normalisation (LN) is applied to inputs before WSA and the FFN. The whole
process of Window Transformer Layer can be represented as

Z = WSA(LN(Z)) + Z;

Z = FFN(LN(Z)) + Z:
(9)

In WSA, self-attention is computed in each window and therefore lacks between
window interactions. To alleviate this shortcoming we utilise shifted window self-attention
(S-WSA) [23]. This method adopts a window partitioning strategy to establish depen-
dency across windows. As shown in Fig. 2(b), window partition starts from the top-left
which displaces the windows by (

�
M
2

�
;
�

M
2

�
) pixels from the regularly partitioned

windows. Although S-WSA can enable some connection between windows, it only
models interactions between locally connected windows; failing to capture important
long-range dependencies.

Table 1. Ablation study on the compositions of each transformer block. We report the PSNR
results on Manga109(4�). The performance increases significantly when both three transformers
are adopted, comparing with the baseline which only contains WSA-WSA/GSA-GSA Trans-
former Groups.

WSA-WSA Transformer Group 3

GSA-GSA Transformer Group 3

Local Transformer Group 3 3 3

Dilated Transformer Group 3 3 3

Group Transformer Group 3 3 3 3

PSNR 31.65 31.48 31.72 31.73 31.70 31.80 31.78 31.86

Dilated Transformer Group. To resolve the limited receptive field in Local Trans-
former Group, we sample features to obtain a dispersed input for self-attention; similar
to atrous convolution [6]. This forms the basis for the Dilated Transformer Group which
includes pixels from further away into the computation of self-attention. As shown in
Fig. 1(a), a Dilated Transformer Group contains one Window Transformer Layer and
one Dilated Transformer Layer. In the computation of dilated self-attention (DSA), the
receptive field is expanded by sampling tokens with a large interval rate. For an in-
put of spatial dimension bH;W c, we sample HW

M2 windows at I = ( H
M ; W

M ) intervals.
Fig. 2(c) shows an example of DSA when I = (2; 2). Tokens from different locations
are effectively reallocated, enabling long-range connections between distant features.
It is worth mentioning that DSA establishes hierarchical connections of tokens while
maintaining equal computational cost as WSA.
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Global Transformer Group. Although Local and Dilated Transformer Groups enable
inter-token relationship modelling for short and long distant regions respectively, the
self-attention calculation is still limited to a patch. To further expand the receptive field,
we introduce global self-attention (GSA). GSA computes self-attention between each
patch in the image, as shown in Fig. 2(d). Similar to PVT2 [37], GSA reduces the com-
putational cost by decreasing the spatial scale of key and value with global average
pooling before calculating self-attention. We set the down-sampling size R to the win-
dow size in WSA. Thus, the computation cost of GSA isO(HWCR2). GSA efficiently
allows dependency modelling between tokens extracted across the whole image; an im-
portant ability for discovering and modelling large scale similarities in image patterns.

3.3 Comparisons with SwinIR

SwinIR is based on the Swin Transformer, which is composed of local window self-
attention layers and different windows are connected via window partitioning. However,
there are essential differences between Swin Transformer and SwinIR. Swin Trans-
former is a hierarchical architecture in which the receptive field size expands as features
are down-sampled. When the input resolution is 224�224, the features in the last stage
have been down-sampled to 7 � 7, which is equal to the window size. In contrast, the
resolution throughout SwinIR remains unchanged. This makes SwinIR prone to relying
on local dependencies due to its limited receptive field, especially for high resolution
scenes.

Our method investigates information of different ranges by novel combinations of
WSA, S-WSA, DSA and GSA, which effectively exploits the local and global context
for better results.

4 Experiments

In this section, we elaborate on the datasets, implementation details and experiments to
evaluate the efficacy of MugFormer.

4.1 Datasets and Evaluation Metrics.

Following [20][49][27], 800 images from DIV2K [32] training set are used to train
MugFormer. We choose 5 standard benchmarks: Set5 [2], Set14 [46], B100 [24], Ur-
ban100 [17] and Manga109 [25] as our testing sets with three upscaling factors: �2,
�3 and�4. We transform SR outputs into YCbCr space and evaluate performance with
PSNR and SSIM metrics on Y channel.

4.2 Implementation Details.

The implementation details of our MugFormer is specified here. In Local, Dilated and
Global Transformer Groups, we set the number of attention heads and dimensions to 6
and 180 respectively. These hyperparameters maintaining comparable parameters and
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FLOPs with SwinIR. We set the window size of WSA, S-WSA, DSA, and the down-
sampling size of GSA to 8. The number of Multi-granularity Transformer Blocks is set
to 6.

During training, paired images are augmented by randomly applying rotations of
90�, 180� or 270� and horizontally flipping. Each mini-batch contains 16 LR patches
and with size 64� 64. We optimize the model using Adam with hyperparameters �1 =
0:9, �2 = 0:999 and � = 1e� 8. The initial learning rate is set to 1e� 4 and is reduced
by half when iterations reach f250000; 400000g. The training is done on two Nvidia
TITAN RTX GPUs.

Table 2. Ablation study on influence of the transformer blocks orders w.r.t. the peformence.

Methods PSNR SSIM
GTG�! LTG �! DTG 31.79 0.9226
GTG�! DTG �! LTG 31.78 0.9224
LTG�! GTG �! DTG 31.83 0.9230
DTG�! GTG �! LTG 31.83 0.9228
DTG �! LTG �! GTG 31.84 0.9230
LTG �! DTG �! GTG 31.86 0.9233

Table 3. Ablation studies on investigating the impact of transformer blocks.

Group Numbers Parameters(M) FLOPs(G) Set5 Set14 B100 Urban100 Manga109
n=2 4.51 159.92 32.63 28.79 27.75 26.75 31.33
n=3 6.40 220.18 32.70 28.86 27.81 26.90 31.57
n=4 8.29 280.45 32.75 28.89 27.83 26.99 31.70
n=5 10.19 340.71 32.82 28.94 27.86 27.07 31.79
n=6 12.10 400.97 32.86 29.03 27.88 27.16 31.8

4.3 Ablation Study

MugFormer is primarily composed of three transformer groups, discussed in Sec. 3.
In this section we conduct ablative experiments to analyze and verify the effective-
ness of the proposed architectural units. To begin with, we analyse the efficacy of each
transformer group. Then, we illustrate that our arrangement, i.e., from local to global,
achieves optimal results.
Multi-granularity Transformer Group. To demonstrate that each transformer group
contributes to the final results, we conduct a series experiments on Manga109 and the re-
sults are shown in Tab. 1. WSA-WSA Transformer Group and GSA-GSA Transformer
Group denote that the transformer group is composed of two consecutive window trans-
former layers or global transformer layers respectively. WSA-WSA Transformer Group
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Table 4. Quantitative comparisons (PSNR/SSIM) with BI degradation on benchmark datasets.
Best and second best results are highlighted with red and blue colors, respectively.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR[20] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
DBPN[16] ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775
RDN[49] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
RCAN[47] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
NLRN[21] ×2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 – –
RNAN[48] ×2 38.17 0.9611 33.87 0.9207 32.32 0.9014 32.73 0.9340 39.23 0.9785
SAN[9] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
RFANet[22] x2 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
HAN[28] ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
NLSA[26] ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
SwinIR[19] ×2 38.35 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9393 39.60 0.9792
Ours ×2 38.38 0.9622 34.19 0.9232 32.46 0.9031 33.43 0.9395 39.64 0.9785
Ours+ ×2 38.43 0.9624 34.28 0.9236 32.50 0.9233 33.52 0.9399 39.71 0.9789

EDSR[20] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RDN[49] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
RCAN[47] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
NLRN[21] ×3 34.27 0.9266 30.16 0.8374 29.06 0.8026 27.93 0.8453 - -
RNAN[48] ×3 34.66 0.9290 30.52 0.8462 29.26 0.8090 28.75 0.8646 34.25 0.9483
SAN[9] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
RFANet[22] x3 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
HAN[28] ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
NLSA[26] ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
SwinIR[19] ×3 34.89 0.9312 30.77 0.8503 29.37 0.8124 29.29 0.8744 34.74 0.9518
Ours ×3 34.93 0.9318 30.87 0.8520 29.40 0.8132 29.38 0.8756 34.89 0.9521
Ours+ ×3 34.98 0.9321 30.92 0.8527 29.42 0.8135 29.48 0.8769 35.01 0.9528

EDSR[20] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
DBPN[16] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
RDN[49] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
RCAN[47] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
NLRN[21] ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 - -
RNAN[48] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7421 26.61 0.8023 31.09 0.9149
SAN[9] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
RFANet[22] ×4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.9187
HAN[28] ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
NLSA[26] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
SwinIR[19] ×4 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226
Ours ×4 32.86 0.9037 29.03 0.7931 27.88 0.7468 27.16 0.8168 31.86 0.9233
Ours+ ×4 32.92 0.9041 29.09 0.7940 27.90 0.7474 27.23 0.8194 31.99 0.9245
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