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1 Overview

In this supplementary material, we provide more details about our full model
and the variant models in Sec. 2 and Sec. 3. Then we supply more experimental
results, including individual distortion evaluations in Sec. 4, comparisons of small
data training in Sec. 5, visualized results of restored images in Sec. 6, and gMAD
competition results in Sec. 7.

2 More Details about Our Full Model

Our model consists of two networks: a teacher network (TN) and a student
network (SN). TN and SN share the same encoder. TN includes an image re-
storer, and SN includes an image quality predictor. We adopt the ResNet-50 as
the shared encoder, and design a multi-branch convolution (MC) based image
restorer and an attention mechanism (Att) based quality predictor. The details
about the network architecture for the encoder, MC, Att, image restorer and im-
age quality predictor are presented in Tab. 1, Tab. 2, Tab. 3, Tab. 4 and Tab. 5,
respectively. (The convolution uses default parameters unless otherwise noted.)

Table 1. Network architecture of the encoder

Input Name Output

Distorted Image Conv+BN+MaxPool R0

R0 ResNet Layer1 R1

R1 ResNet Layer2 R2

R2 ResNet Layer3 R3

R3 ResNet Layer4 R4
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Table 2. Network architecture of the image restorer.

Input Name Description Output

R4 Conv MC w/o the 1st concat C1

C1 UpSample upsample(×2) U1

U1, R3 MC - O1

O1 UpSample upsample(×2) U2

U2, R2 MC - O2

O2 UpSample upsample(×2) U3

U3, R1 MC - O3

O3 UpSample upsample(×2) U4

U4, R0 MC - O4

O4 UpSample upsample(×2) U5

U5 Conv conv kernel size=1 Restored Image

Table 3. Network architecture of the MC.

Input Name Description Output

R3&U1/R2&U2/R1&U3/R0&U4 Concate dim=1 F1

F1 Inception Path1 conv kernel size=1 I1

F1 Inception Path2
conv kernel size=1

I2BN RELU
conv kernel size=5 padding=2 groups=out ch / 2

F1 Inception Path3

conv kernel size=1

I3
BN RELU
conv kernel size=3 padding=1 groups=out ch / 2
BN RELU
conv kernel size=1

F1 Inception Path4
MaxPool kernel size=3 stride=1 padding=1

I4
conv kernel size=1

I1, I2, I3, I4 Concate dim=1 D1

D1 Conv1
conv kernel size=3 padding=1 groups=out ch / 2

D2
BN RELU

D2 Conv2
conv kernel size=3 padding=1 groups=out ch / 2

D3
BN RELU

D3 Conv3
conv kernel size=3 padding=1 groups=out ch / 2

O1/O2/O3/O4
BN RELU

Table 4. Network architecture of the Att.

Input Flow Operation Output

Xenc,XMC Concate - Xfuse
Xfuse Conv conv kernel size=1 Q

Xfuse Conv conv kernel size=1 K

Xfuse Conv conv kernel size=1 V

Q, K BMM matrix product Softmax XAtt
V, XAtt BMM matrix product Out
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Table 5. Network architecture of the image quality predictor.

Input Flow Operation Output

ResNet Layer4 Conv conv kernel size=1 RELU Xenc

O1 Conv+AvgPool
conv kernel size=1 RELU

XMC1AvgPool kernel size=2 stride=2

O2 Conv+AvgPool
conv kernel size=1 RELU

XMC2AvgPool kernel size=4 stride=4

O3 Conv+AvgPool
conv kernel size=1 RELU

XMC3AvgPool kernel size=8 stride=8

Xenc,XMC1 Att – Xenc
Xenc,XMC2 Att – Xenc
Xenc,XMC3 Att – P1

P1 Conv conv kernel size=1 RELU P2

P2 Conv conv kernel size=1 RELU P3

P3 Conv conv kernel size=1 RELU P4

P4 Conv conv kernel size=1 RELU P5

P5 Conv conv kernel size=7 Predicted Score

3 More Details about the Variant Models

In this section, we provide more details about the variant models, including the
w/o path-1, w/o path-2,w/o TNL, w/o MC and w/o Att, which are defined in
Sec 4.5 of our manuscript. Tab. 6 lists the components of the variant models and
our full model.

For the variant model w/o path-1, the first prior knowledge transfer path,
which connects the shared encoder (ResNet-50) and the image quality predictor
is removed.

For the variant model w/o path-2, the second prior knowledge transfer path,
which connects the image restorer and the image quality predictor is removed.

For the variant model w/o TNL, it has the same network architecture with
our full model, while the difference is that it removes the first-phase training,
and the model is only trained for BIQA.

For the variant model w/o MC, each MC is replaced by three convolutions
in the image restorer.

For the variant model w/o Att, each Att is replaced by one convolution in
the SN.

Table 6. Components of the variant models and our full model.

ResNet-50 path 1 Image restorer path 2 MC Training for image restoration Att

w/o path-1 ✓ ✓ ✓ ✓ ✓ ✓
w/o path-2 ✓ ✓ ✓ ✓
w/o TNL ✓ ✓ ✓ ✓ ✓ ✓
w/o MC ✓ ✓ ✓ ✓ ✓ ✓
w/o Att ✓ ✓ ✓ ✓ ✓ ✓

Full Model ✓ ✓ ✓ ✓ ✓ ✓ ✓
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4 More Comparisons on Individual Distortions

In this section, we provide more results of individual distortion evaluations. The
comparisons with state-of-the-art methods in terms of SROCC on LIVE [1] and
CSIQ [2] datasets are shown in Tab. 7, where the highest score for each distortion
type is marked in bold. As shown in Tab. 7, our model outperforms the compared
models on most distortion types. For the AWGN, JP2K and GB distortion on
CSIQ dataset, our model shows a slight lower performance, but it still achieves
acceptable results with SROCC of 0.933, 0.947 and 0.941, respectively. However,
the performance of the JPEG distortion on LIVE dataset is less satisfying. This
is due to the huge difference of distortion levels between the pre-training dataset
and the LIVE dataset. In the future work, we will include more distortion types
and levels to train the TN to strengthen the robustness of our model against
various distortions.

Table 7. Performance comparison of individual distortions on LIVE and SCIQ datasets
in terms of SROCC.

Dataset LIVE CSIQ

Type FF GB JP2K JPEG WN AWGN JPEG JP2K FN GB CC

BRISQUE [3] 0.828 0.964 0.929 0.965 0.982 0.723 0.806 0.840 0.378 0.820 0.804
ILNIQE [4] 0.833 0.915 0.894 0.941 0.981 0.850 0.899 0.906 0.874 0.858 0.501
HOSA [5] 0.954 0.954 0.935 0.954 0.975 0.604 0.733 0.818 0.500 0.841 0.716

FRIQUEE [6] 0.884 0.937 0.919 0.947 0.983 0.748 0.869 0.846 0.753 0.870 0.838

BIECON [7] 0.923 0.956 0.952 0.974 0.980 0.902 0.942 0.954 0.884 0.946 0.523
PQR [8] 0.921 0.944 0.953 0.965 0.981 0.915 0.934 0.955 0.926 0.921 0.837

DB-CNN [9] 0.930 0.935 0.955 0.972 0.980 0.948 0.940 0.953 0.940 0.947 0.870
HyperIQA [10] 0.934 0.926 0.949 0.961 0.982 0.927 0.934 0.960 0.931 0.915 0.874

Ours 0.970 0.974 0.958 0.913 0.983 0.933 0.950 0.947 0.954 0.941 0.917

5 More Comparisons on Small Training Data

In this section, we provide more comparisons of small data training with Hy-
perIQA5 [10] and DB-CNN6 [9]. The SROCC and PLCC curves with respect
to the training data ratio on LIVE [1] and CSIQ [2] datasets are shown in Fig.
1 and Fig. 2, respectively. The results are consistent with those shown in our
manuscript. We can observe that as the training data ratio decreases, the ad-
vantage of our model is more significant in terms of both metrics. Moreover, the
scores achieved by our model show a slower decrease compared with another two
models. This means that our model can provide a better BIQA performance for
scenarios where the annotated data is insufficient.

5 https://github.com/SSL92/hyperIQA
6 https://github.com/zwx8981/DBCNN-PyTorch

https://github.com/SSL92/hyperIQA
https://github.com/zwx8981/DBCNN-PyTorch
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Fig. 1. Comparison of small data training on LIVE in terms of SROCC (left) and
PLCC (right).

Fig. 2. Comparison of small data training on CSIQ in terms of SROCC (left) and
PLCC (right).
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6 More Samples on Restored Images

In this section, we provide more restored images of our TN. We select seven dis-
tortion types from the TID2013 [11], including Block-Wise (BW), Color Aber-
rations (CA), Non Eccentricity Pattern Noise (NEPN), Gaussian Blur (GB),
Gaussian Noise (GN), Impulse Noise (IN) and JPEG compression (JEPG). Fig.
3 illustrates examples of restored images by our TN. As we can see, our model
produces visually pleasing restored images for all these distortion types. The
result validates the robustness of our model against various distortions.

Fig. 3. Examples of restored images by the TN. For each image group, the images in
the first row from left to right are corrupted by different types of distortions, and the
second row shows the corresponding restored images by the TN.

Meanwhile, we provide more visual results of image restoration with the
same distortion type but different levels. We choose three typical distortions -
Color Quantization Dither (CQD), Multiplicative Gaussian Noise (MGN), and
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Quantization Noise (QN). As shown in Fig. 4, all the restored images from
different distortion levels show high quality. Although image restoration is not
the objective of this paper, and we do not design complicated networks for it,
we still achieve a satisfying performance on image restoration.

Fig. 4. Examples of restored images by TN. For each image group, the images in the
first row from left to right are corrupted by the same type of distortion with increasing
levels, and the second row shows the corresponding restored images by TN.

7 More Results on gMAD Competition

In this section, we provide more gMAD competition [12] results compared with
tow state-of-the-art BIQA methods, hyperIQA [10] and DBCNN [9]. As shown
in Fig. 5 and Fig. 6, it can show good robust performance, whether our model
acts as an attacker or a defender.
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Fig. 5. The gMAD competition against hyperIQA [10] on SPAQ dataset

Fig. 6. The gMAD competition against DBCNN [9] on SPAQ dataset
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