
Appendix for:
gScoreCAM: What objects is CLIP looking at?

A1 Derive bounding box from heatmap

A1.1 Get bounding box with Otsu’s method

Fig. S1 shows the intermediate results during the procedure (prompt: dog). As
described in Algorithm 1, we obtain the bounding box using the following pro-
cedure:

1. From an input image, we used a CAM method to get a heatmap.
2. Binarize the heatmap with Otsu’s method (using OpenCV function

cv.threshold with option cv.THRESH_OTSU).
3. Find the contours of the binary map (using the OpenCV function

cv2.findContours).
4. For each contour, determine a minimal bounding box (using the OpenCV

function cv2.boundingRect).
5. Then choose the largest bounding box as result.

Input image Heatmap Binary map Contours Bounding box

Fig. S1: From left to right is the procedure we derive bounding box from heatmap.
We first get the heatmap from input image. Then use Otsu’s method to find the
binary map. We find sets of bounding boxes from the contours and then choose
the largest one as our final result.



Algorithm 1 Derive Bounding box from Heatmap
Input: (i) A heatmap M ∈ Ru×v from any CAM methods. (ii) Input image size (w, h).
Output: A bounding box for target class or prompt.
1: M← Upsample(M, size=(w, h),method="bilinear")
2: M← Otsu(M)
3: contours← findContours(M)
4: boxes = [[0, 0, 0, ]...[0, 0, 0, 0]]
5: for i in len(contours):
6: boxes[i]← boundingRect(contours[i])
7: u← argmaxArea(boxes)
8: output← boxes[u]

A1.2 Effects on using Otsu’s method

In this section, we study how Otsu’s method differs from the commonly used
single threshold by grid search. We performe the experiment on the COCO
validation set. We keep the other procedure the same as in Algorithm 1, except
that we replace Otsu’s binarization with using a single threshold. We perform a
grid search for the optimal threshold on the subset of images in the training set
(100 images per class) for each method with gridsize = 0.05. The search is based
on the mean IoU over the search samples. We find that the difference between
using Otsu’s method and using optimal threshold by grid search is trivial.

Table S1: Difference between Otsu binarzation with optimal thesholding. The
difference between Otsu’s method and using optimal threshold value is very
small.

Single value Otsu Difference

GradCAM 11.95% 11.56% -0.39%
GradCAM++ 9.03% 9.68% 0.65%
xGradCAM 6.85% 5.60% -1.25%
GroupCAM 5.58% 4.52% -1.06%
LayerCAM 9.99% 9.19% -0.80%
ScoreCAM 20.74% 20.43% -0.31%
gScoreCAM 20.27% 20.83% 0.56%
Hila’ method(ViT-B/32) 13.33% 12.82% -0.51%
ScoreCAM(ViT-B/32) 9.60% 10.21% 0.61%
gScoreCAM(ViT-B/32) 9.40% 10.10% 0.70%
Mean 11.67% 11.49% -0.18%



A2 Hyperpapamters of CLIP RN50, RN50x16 and
ViT-B/32

We list some key hyperparameters of the three CLIP models (RN50, RN50x16
and ViT-B/32) we use in our experiments. A complete list of hyperparameters
can be found in Table 19 of Radford et al. [?].

Table S2: Some key hyperparameters of the CLIP models [?] used in our exper-
iments.

Embedding Input ResNet-50 Vision Transformer (ViT)
dimension resolution blocks width layers width heads

RN50x4 640 288 (4,6,10,6) 2560 N/A
RN50x16 768 384 (6,8,18,8) 3072

ViT-B/32 512 224 N/A 12 768 12

A3 Localization on scenes (ADE20K)

In order to study the performance in the scenario in which the target is relatively
large instead of a small object, we evaluate different CAM based localization
methods on ten different scenes of ADE20K. We choose the scene of field, hill,
river, grass, sky, sand, sea, snow, water, and road. These scenes, on average, cover
17.5% of the image, where objects on COCO cover 4.9% of the image. Among
all the methods tested, gScoreCAM provides the highest average IoU.

Table S3: We measure the average IoU on 10 different scenes; the result shows
that gScoreCAM still is the best method even on large scenes.

GradCAM GradCAM++ xGradCAM GroupCAM LayerCAM gScoreCAM ScoreCAM

RN50x4 0.073 0.105 0.112 0.161 0.068 0.211 0.198

RN50x16 0.141 0.102 0.078 0.168 0.061 0.216 0.190

A4 Visualizations of different methods

In this section, we show a series of comparisons between different methods. We
find that for these hard tasks (Fig. S4), gScoreCAM outperforms other methods
in COCO and PartImageNet.



A4.1 Advantages of gScoreCAM

We show a few sample visualizations of gScoreCAM, GradCAM, ScoreCAM and
HilaCAM in Figs. S3 and S4.



Fig. S2: ZSD results COCO dataset.



Fig. S3: ZSD results on PartImageNet dataset.



(a) COCO (b) Part ImageNet

(c) COCO (d) Part ImageNet

(e) COCO (f) Part ImageNet

Fig. S4: Sample visualization comparison between gScoreCAM to GradCAM,
ScoreCAM, and HilaCAM. We find that GradCAM always has low coverage
which ScoreCAM tends to have large coverage. HilaCAM is something in the
middle but have some "corner" issues. gScoreCAM can capture the target object
most of the time although the resulting bounding box (red) may not be very
accurate.



Fig. S5: Some samples that gScoreCAM performs better than GradCAM on
COCO dataset.



Fig. S6: Some samples that gScoreCAM performs better than ScoreCAM on
COCO dataset.



Fig. S7: Some samples that gScoreCAM performs better than HilaCAM on
COCO dataset.



Fig. S8: Some samples that gScoreCAM performs better than GradCAM on Part
ImageNet dataset.



Fig. S9: Some samples that gScoreCAM performs better than ScoreCAM on Part
ImageNet dataset.



Fig. S10: Some samples that gScoreCAM performs better than HilaCAM on Part
ImageNet dataset.


