
COLLIDER: A Robust Training Framework for Backdoor Data 19

A COLLIDER Details

In this section, first we show how the coreset selection objective of Eq. (6) can be
turned into a submodular maximization equivalent. This re-formulation enables
us to use greedy algorithms to solve the coreset selection objective. Afterwards,
we present the full Collider algorithm in detail.

A.1 The Submodular Maximization Equivalent of the Coreset
Selection Objective [25,26]

Without loss of generality, we use the derivation of Mirzasoleiman et al. [26] for
the basic coreset selection objective of Eq. (5). The equivalency of Eq. (6) to
submodular maximization can be deduced similarly.

A set function F : 2|V | → R+ is called submodular if for any S ⊂ T ⊂ V and
e ∈ V \T we have [26]

F (S ∪ {e})− F (S) ≥ F (T ∪ {e})− F (T) .

Moreover, if for any S ⊂ V and e ∈ V \S we have a non-negative F (e|S), then
F (·) is called monotone [26].

Now, assume that we can find a constant upper-bound for all the dij(θ) values
from Eq. (5). If we denote this constant upper-bound with d0, then Eq. (5) can
be re-written as [26]

S∗(θ) ∈ argmax
S⊆V

∑
i∈V

max
j∈S

d0 − duij(θ) s.t. |S| ≤ k, (8)

where duij(θ) =
∥∥∥Σ′

L

(
z
(L)
i

)
∇ℓ

(L)
i (θ)−Σ′

L

(
z
(L)
j

)
∇ℓ

(L)
j (θ)

∥∥∥ is the θ-dependent

upper-bound of dij(θ) from Eq. (7). Mirzasoleiman et al. [26] argue that the
function

F (S,θ) =
∑
i∈V

max
j∈S

d0 − duij(θ)

is a monotone submodular set function. As such, Eq. (8) is equivalent to a well-
known submodular maximization problem widely known as the facility location,
and there exist efficient greedy algorithms that can solve it sub-optimally.4

A.2 COLLIDER Final Algorithm

Algorithm 1 shows the Collider framework for training neural networks on
backdoor poisoned data in detail.

4 In our experiments, we use the implementation of Mirzasoleiman et al. [26] available
online.

https://github.com/snap-stanford/crust

20 H. M. Dolatabadi et al.

Algorithm 1 Collider for training DNNs on backdoor poisoned data

Input: dataset D = {(xi, yi)}ni=1, neural network fθ(·).
Output: robustly trained neural network fθ(·).
Parameters: number of classes C, total epochs T , batch size b, coreset size k,
LID start epoch l, LID number of neighbors N , LID moving average window w,
LID Lagrange multiplier λ.

1: Initialize θ randomly.
2: for t = 1, 2, . . . , T do
3: St = ∅
4: for c = 1, 2, . . . , C do

5: Dc = ∪n
i=1 {(xi, yi) | yi = c}.

6: Yc = {fθ(xi) | (xi, yi) ∈ Dc}.
7: Gc = GradientUpperBounds (Dc,Yc). \\ using Eq. 7

8: if t ≥ l then

9: LIDc = GetLID (Yc,neighbors = N).

10: LIDc = MovingAverage (LIDc,window = w).

11: m = (1− k) |Dc| / (T − l).

12: idx = TopKargmax (LIDc,K = m).

13: Remove data with indices idx from Dc and D.

14: Gc = UpdateCoeffs (Gc, λ,LIDc). \\ using Eq. 6

15: end if
16: St

c = GreedySolver (Dc,Gc, coreset size = k).

17: St = St ∪ St
c.

18: end for
19: Update neural network parameters θ using stochastic gradient descent

on St.
20: end for

COLLIDER: A Robust Training Framework for Backdoor Data 21

B Implementation Details

In this section, we provide the details of our experiments including hyperparam-
eters, model architectures, and backdoor poisoning settings. Note that all of the
experiments were run using a single NVIDIA Tesla V100-SXM2-16GB GPU.

Datasets and Backdoor Poisoning Settings. We used CIFAR-10 [58], SVHN [59],
and 12 randomly selected classes of ImageNet [1] for our experiments. We padded
CIFAR-10 and SVHN datasets with 4 zero pixels added to both sides of the
image, and then randomly cropped each instance such that the final images
become of size 32×32. For ImageNet-12, the zero-padding was done via 28 pixels,
and the final image size after random cropping was set to 224×224. In each case,
we randomly selected a target class, and poisoned a fraction of the training
data in that class with their backdoor counterpart. The ratio of the poisoned
examples in the target class is denoted as the injection rate. After injecting
the poisoned data, we randomly chose a portion of the training data as our
clean held-out validation set. This data was used for model selection. Finally,
we used BadNets [6] with checkerboard pattern, label-consistent attacks [31],
sinusoidal strips [32], and HTBA triggers [37] as our backdoor data poisoning
rules.5 Samples of each poisoned data can be found in Fig. 4. Tab. 3 summarizes
the settings of each dataset used in our experiments.

Model Architecture & Training Hyperparameters. We used stochastic gradient
descent (SGD) optimizers in our experiments. The momentum and weight decay
for all datasets were set to 0.9 and 5e-4, respectively. For CIFAR-10 and SVHN
datasets, we train ResNet-32 [60] models for 120 epochs. The initial learning rate
was set to 0.1, which was later divided by 10 at epochs 80 and 100. For ImageNet-
12, ResNet-18 [60] neural networks were trained for 200 epochs. In this case, the
initial learning rate was also set to 0.1, and it was later divided by 10 at epochs 72
and 144. For training with coresets, the ratio of the data selected from each class
is denoted as the coreset size. Moreover, for Collider, the epoch at which the
LID is enabled is denoted as the LID start epoch. For the LID term in Collider
(Eq. (6)), a Lagrange multiplier is also required. This hyperparameter, denoted
by λ, was set to 0.01 after tuning for CIFAR-10 dataset, and kept fixed through
the other experiments. Tab. 4 shows all the hyperparameters used for training
the neural networks in our experimental study.

C Extended Experimental Results

In this section, we present our extended simulation results.

5 For label-consistent attacks [31], we used the poisoned data provided by the official
repository. In particular, we used the adversarial data generated with ℓ2-bounded
perturbations, where the bound is set to 300.

https://github.com/MadryLab/label-consistent-backdoor-code
https://github.com/MadryLab/label-consistent-backdoor-code

22 H. M. Dolatabadi et al.

Table 3: Details of the datasets used in our experiments.

Dataset Image Size Zero-padding Backdoor Target Class Injection Rate Val. Data Ratio

CIFAR-10 32×32 4 BadNets Airplane 10% 4%
CIFAR-10 32×32 4 Label Consist. Horse 10% 4%

SVHN 32×32 4 Sin. Strips Digit 7 10% 4%
ImageNet-12 224×224 28 HTBA Triggers Jeep, land-rover 40% 20%

BadNets Sinusoidal Strips Label-consistent HTBA

Fig. 4: Samples of backdoor data poisonings used in experiments.

Performance Measures. We use three measures to compare the performance of
each training algorithm on the backdoor poisoned data. First, we compute the
accuracy of each model on the clean test set, and denote it with ACC. Next, we
evaluate the robustness of each method by the attack success rate (ASR). To
compute this quantity, we first remove all the data that originally belong to the
target class. Then, we install the trigger used in each case to poison the rest of
the test set. We then compute the accuracy of the poisoned data, which should
lead the model to output the target class. Finally, we evaluate the purity of our
coresets. To this end, we define a quantity which we call the filtered poison data.
In a nutshell, this measure shows the portion of the poisoned data that is left out
of the coreset. This value is always between zero and one. Zero means that all the
poisoned data is in our selected coreset. In contrast, one shows that the selected
coreset is free of any poisoned data. To ensure reproduciblity, each experiment
is repeated with 5 different random seeds.6 Unless specified otherwise, in each
case we report the mean alongside an errorbar which is the standard deviation
across these 5 seeds. This errorbar is shown by a shaded area or bars in plots.

ImageNet-12 Results. Tab. 5 shows our experimental results for ImageNet-12
dataset. Like all the previous small size image datasets, Collider gives the
best robustness against backdoor data poisonings in this case.

WANet [36] Results. As suggested by the reviewers, we run a similar experiment
to Tab. 5 over CIFAR-10 dataset that was poisoned with WANet [36]. As seen
in Tab. 6, our approach leads to a significant reduction of the attack success rate
in this state-of-the-art attack. Note that for this case, we just ran our algorithm
without any rigorous hyperparameter tuning.

6 Our implementation can be found in this repository.

https://github.com/hmdolatabadi/COLLIDER

COLLIDER: A Robust Training Framework for Backdoor Data 23

Table 4: Training hyperparameters used in our experiments.

Hyperparameter
Dataset

CIFAR-10 & SVHN ImageNet-12

Optimizer SGD SGD
Scheduler Multi-step Multi-step
Initial lr. 0.1 0.1
lr. decay (epochs) 10 (80, 100) 10 (72, 144)
Batch Size 128 32
Epochs 120 200

Model arch. ResNet-32 ResNet-18

Coreset size 0.4 for Sin. Strips, 0.3 otherwise
LID Start Epoch 30 for BadNets and Sin. Strips, 50 for Label-consist. and HTBA
λ 0.01

Table 5: Clean test accuracy (ACC) and attack success rate (ASR) in % for
HTBA [37] backdoor triggers on ImageNet12 [1] dataset. The results show the
mean and standard deviation for 5 different seeds. In this case, 40% of the data
in the target class contains backdoor poisoned data.

Training
HTBA [37]

ACC ASR

Vanilla 91.43± 0.52 49.36± 14.42
Coresets 87.29± 0.50 37.63± 4.84
Collider 85.15± 0.32 19.11± 3.05

24 H. M. Dolatabadi et al.

Table 6: Clean test accuracy (ACC) and attack success rate (ASR) in % for
WANet [36] data poisonings on CIFAR-10. The results show the mean and stan-
dard deviation for 5 different seeds. The poisoned data injection rate is 40%. In
this case, the coreset size is 0.4.

Training
WANet [36]

ACC ASR

Vanilla 91.63± 0.28 92.24± 1.74
Coresets 86.04± 0.89 5.73± 2.78
Collider 84.27± 0.55 4.29± 2.54

Semi-supervised Learning on Non-coreset Data. Instead of excluding non-coreset
data from the training process, one can add them as a set of unlabeled data
and exploit semi-supervised learning to train the model. To this end, we use
MixMatch [61] as our semi-supervised learning approach.7 Moreover, we update
the neural network weights using an exponential moving average, and change
the optimizer to Adam [62] to comply with the MixMatch implementation that
we use. Apart from these tweaks, all the Collider hyperparameters were kept
similar to their original settings.

We perform semi-supervised learning (SSL) on the coreset selection as well
as Collider. To differentiate the effect of semi-supervised learning from coreset
selection, we also randomly select a fraction of the data and remove their labels
during each epoch and run MixMatch [61] on them.

Tab. 7 shows our results using semi-supervised learning. For reference, our
results without using MixMatch is also shown at the first three rows of Tab. 7.
As seen, using MixMatch we can improve the clean accuracy gap with the vanilla
training on BadNets [6] and Label-consistent [31] attacks. This use, however, has
an adverse effect on Sinusoidal Strips [32].

LID of Poisoned vs. Clean Data. Fig. 5 shows the LID values for clean and poi-
soned data samples, which are poisoned by BadNets, label-consistent attacks,
and sinusoidal strips, respectively. As seen, there definitely is a difference be-
tween clean and poisoned data in terms of the local intrinsic dimensionality.
This difference becomes less severe for label-consistent attacks that use reduced-
intensity triggers. Still, the right tail of the LID distribution in all the cases
consist of poisoned data only. This observation justifies our choice of throwing
them away permanently from the training set.

Coreset Size Effects. Fig. 6 shows the recorded performance measures through-
out the training for basic coreset selection (Eq. (5)) and Collider. In each
case, we vary the coreset size to see how the underlying framework changes its

7 We use the PyTorch implementation of MixMatch available here.

https://github.com/YU1ut/MixMatch-pytorch

COLLIDER: A Robust Training Framework for Backdoor Data 25

(a) BadNets

(b) Label-consistent Attack

(c) Sinusoidal Strips

Fig. 5: The LID of clean and backdoor poisoned data samples. Left: average LID
norm across 5 different seeds. Right: LID distribution for a single run.

26 H. M. Dolatabadi et al.

Table 7: Clean test accuracy (ACC) and attack success rate (ASR) in % for back-
door data poisonings on CIFAR-10 (BadNets and label-consistent) and SVHN
(sinusoidal strips) datasets. The results show the mean and standard deviation
for 5 different seeds. The poisoned data injection rate is 10%. For BadNets and
label-consistent attacks, the coreset size is 0.3. It is 0.4 (0.2) for sinusoidal strips
(+SSL).

Training
BadNets [6] Label-consistent [31] Sinusoidal Strips [32]

ACC ASR ACC ASR ACC ASR

Vanilla 92.19 ± 0.20 99.98 ± 0.02 92.46 ± 0.16 100 95.79 ± 0.20 77.35 ± 3.68
Coresets 84.86 ± 0.47 74.93 ± 34.6 83.87 ± 0.36 7.78 ± 9.64 92.30 ± 0.19 24.30 ± 8.15
Collider 80.66 ± 0.95 4.80 ± 1.49 82.11 ± 0.62 5.19 ± 1.08 89.74 ± 0.31 6.20 ± 3.69

Random Subset + SSL 91.32 ± 0.35 99.57 ± 0.49 91.48 ± 0.16 100 95.71 ± 0.10 65.22 ± 1.89
Coresets + SSL 88.36 ± 0.26 4.45 ± 0.34 87.82 ± 0.18 6.56 ± 2.87 91.12 ± 0.74 42.62 ± 3.88
Collider + SSL 84.67 ± 0.62 4.10 ± 0.58 84.33 ± 0.37 2.62 ± 0.22 90.53 ± 0.45 31.17 ± 7.69

behavior. As expected, by reducing the coreset size we will have cleaner coresets,
and hence, get lower attack success rate. However, there is a trade-off between
the coreset size and the clean accuracy, where by reducing the coreset size the
validation accuracy also drops. Another important insight that can be taken
from Fig. 6 is that the LID regularization almost closes the gap in terms of the
filtered poison data between different coreset sizes. Furthermore, it can be seen
that the LID regularization is crucial to reduce the attack success rate. Finally,
Fig. 7 also shows the aforementioned trade-off between the clean test accuracy
and the attack success rate as the coreset size is increased. In almost all the
cases, Collider results in a more robust neural network.

Number of Nearest Neighbors in LID Computation. Finally, we study the effect
of the number of neighbors in the LID regularizer. As pointed out in Sec. 3, to
compute the LID maximum likelihood estimation we need to specify the number
of nearest neighbors for each data sample. This number has a direct relationship
with the quality of our estimates. In particular, the higher the number of neigh-
bors, the more exact the LID estimate. As such, we expect that as we increase the
number of nearest neighbors, Collider would perform better. However, we can-
not increase this value indefinitely as we have limited computational resources.
Tab. 8 shows the results of our experiments on CIFAR-10 dataset poisoned with
checkerboard triggers. As seen, by increasing the number of nearest neighbors
we can improve the neural network robustness against backdoor attacks.

COLLIDER: A Robust Training Framework for Backdoor Data 27

(a) Base coreset selection (Eq. (5))

(b) Collider

Fig. 6: Evolution of the performance measures (validation accuracy, attack suc-
cess rate, and filtered poison data) with training. The training dataset is CIFAR-
10 which is poisoned by injecting 10% backdoor data into its target class. (a)
Basic gradient-based coreset selection (b) Collider: gradient-based coreset se-
lection with LID regularization.

Table 8: The effect of the number of nearest neighbors in LID computation on
the clean test accuracy (ACC) and attack success rate (ASR) in % for BadNet
data poisoning on CIFAR-10 dataset. The poisoned data injection rate is 10%.

Nearest Neighb. 20 60 95

Coreset Size ACC ASR ACC ASR ACC ASR

0.2 76.53 ± 1.74 2.99 ± 0.74 75.91 ± 0.72 4.22 ± 0.54 75.51 ± 1.47 4.04 ± 0.93
0.3 83.44 ± 0.66 14.57 ± 7.67 80.66 ± 0.95 4.80 ± 1.49 80.94 ± 0.43 5.02 ± 1.55
0.4 86.37 ± 0.30 25.60 ± 7.90 85.31 ± 0.19 14.24 ± 3.11 83.76 ± 0.58 6.05 ± 1.73
0.5 88.13 ± 0.27 67.01 ± 15.54 87.37 ± 0.60 15.20 ± 6.45 86.49 ± 0.47 8.94 ± 3.85

28 H. M. Dolatabadi et al.

(a) CIFAR-10, BadNets

(b) CIFAR-10, Label-consistent Attacks

(c) SVHN, Sinusoidal Strips

(d) ImageNet-12, HTBA Triggers

Fig. 7: Test accuracy and attack success rate trade-off as the coreset size is in-
creased.

COLLIDER: A Robust Training Framework for Backdoor Data 29

Fig. 8: Effect of increasing the injection rate on the attack success rate. The
coreset size is 0.3.

	COLLIDER: A Robust Training Framework for Backdoor Data

