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Supplementary Material

1 Data Curation Cost

The data collection process requires either manual or sensor based annotations
(See Table 1). As this being time consuming process, the research community
moves towards the data generation process for benchmarking with a large varia-
tion in data attributes. Prior works in this domain generate both synthetic and
real image. In order to capture the possible rotational variation in image, gaze
redirection techniques [4,5,13,14] are quite popular. The other approaches are
mainly based on random forest [8] and style transfer [11]. However, due to sev-
eral image quality based limitations, these generated datasets are not used for
benchmarking.

2 Experimental Details

2.1 Automatic 3-frame set mining on Benchmark Datasets

For generating 3-frame sets, following process is followed:
CAVE [12] dataset is collected with 7 horizontal and 3 vertical gaze locations
as shown in the left part of Fig. 1. Considering these positions as 7 × 3 grids,
we defined three types of gaze trajectories: horizontal, vertical and diagonal. As
temporal information is missing, we can consider bi-directional gaze trajectories.
We reverse the order for bidirectional set mining (Refer Fig. 1). The bidirectional
gaze trajectories are applied for CAVE dataset only due to the absence of tempo-
ral information. Note that this does not impact the requirement of ground truth
annotation for weak supervision. In this way, we collect 3,024 3-frame sets for
training. For this dataset, we require 6.56% and 3.28% of prior data annotation
for our ‘2-labels’ and ‘1-label’ paradigms.
TabletGaze [6] dataset is also collected in a 7 × 5 grid format (as shown in
the middle image of Fig. 1). Similar to CAVE dataset, we define horizontal,
vertical and diagonal gaze trajectories and collect 108,524 3-frame sets. For
TabletGaze dataset, as temporal information is also present, we consider uni-
directional frames only. For 3-frame set mining on TabletGaze data, we require
less than 1% prior data annotation for both the frameworks.

Table 1: Comparison of benchmark datasets for cost analysis.

Dataset Cost Analysis

CAVE [12]
Canon EOS Rebel T3i camera and a Canon EF-S
18–135 mm IS f/3.5–5.6 zoom lens

MPII [17]
Laptop
Collection duration: 3 months

TabletGaze [6] Samsung Galaxy Tab S

Gaze360 [7] Ladybug5 360°panoramic camera, AprilTag

ETH-XGaze [16]
18 Canon 250D SLR camera, ESPER trigger box,
Raspberry Pi and with controlled illumination.
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MPII [15] gaze dataset is collected by showing random points on the laptop
screen to the participants. To make the gaze trajectory smooth, we sort the given
coordinates of the points in ascending order and consider it as a gaze trajectory.
Further, 3-frame sets are collected in a day-wise for each participant. Following
this procedure, we collect 32,751 3-frame sets. We extracted these 3-frame sets
with 4.67% prior data annotation.
For Gaze360 [7], we compute person-specific 3-frame sets. As each participant
fixates gaze at a moving target, we consider the target’s trajectory as the gaze
trajectory. This results in 197,588 3-frame sets and we use 2.38% of annotated
data.

2.2 On unlabelled ‘in the wild’ YouTube data

We evaluate our method on an ‘in the wild’ data i.e. when the expert/ground
truth labels are not available. We collect approximately 400,000 frames from
YouTube videos.

Gaze Trajectory Selection and 3-frame set Mining As the relative po-
sitions of pupil-centers provide the most important information regarding gaze
direction, we utilize this property to detect gaze trajectories. We utilize two eye
symmetry property i.e. the change in relative position of the iris is symmetrical
while scanning 3D space [2]. Based on this hypothesis, we compare the verti-
cal angles formed with the following points i.e. pupil-center, nose in both eyes.
In Fig. 3, I1 and I2 are the pupil centers; V is the vertical direction w.r.t. the
nose tip point and θ1, θ2 are the above mentioned angles. The change in θ1 and
θ2 depicts the path of the gaze trajectory sequence. For example, if a person
shifts his/her gaze from left to right, the values of the angles will be as follows:
initially, θ1 will be greater than θ2; then gradually θ1 will decrease and θ2 will
increase; finally, θ2 will be greater than θ1. Thus, by monitoring these angles we
can approximate gaze trajectories. The heuristic also considers the trajectory
segment if it starts from the middle until there is a change in any of the angles
θ1 and θ2. Although the proposed method is robust to head movements within
the range of −10° to 10°. After identifying the gaze trajectories, we annotate
the start and end frames with OpenFace [1] and collect possible 3-frame sets. In
this 3-frame set collection and data annotation procedure, we require 5.34% and

Fig. 1: 3-frame set mining process for CAVE [12] and TabletGaze dataset [6].
Here, red, blue and black arrows represent horizontal, vertical and diagonal gaze
trajectories.



3

2.67% annotation of the overall data for ‘2-labels’ and ‘1-label’ settings. Accord-
ing to literature [3], human gaze trajectories are considered to be spherical. Thus
for ground truth annotation, we label remaining frames by SLERP interpolation
method [3]. Further, we apply our ‘2-label’ and ‘1-label’ model on this data.

2.3 Evaluation Metrics

For quantitative evaluation, we use Mean Absolute Error (MAE), Correlation
Coefficient (CC) and Angular Error. Mean Absolute Error is calculated as:∑n

i=1 |yp−y|
n Correlation coefficient is calculated as:

∑n
i=1(yi−y)(yp

i −yp)√∑n
i=1(yi−y)2

∑n
i=1(y

p
i −yp)2

Here, yp is the predicted label and y is the ground truth label in normalized
space, (.) indicates mean across the samples. Similar to the previous meth-
ods [16,10,9], angular error is the average error across test data measured in
terms of cosine angle between ground truth and predicted gaze direction. It is

measured as follows: g
||g||2 .

g′

||g′||2 Here, g and g′ respectively denote the ground

truth and predicted gaze in terms of 3D gaze direction vector.

Table 2: Cross dataset performance evaluation among the benchmark datasets in terms
of MAE in both ‘2-labels’ and ‘1-label’ settings. Given any two datasets D1 and D2, the
training is performed on the train partition of D1 (i.e. Dtrain

1 ) using the Original Label
(OL) and ResNet-50 as backbone network. Further, it is evaluated on test partition of
D2 (i.e. Dtest

2 ).
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2-labels
Test→
Train

↓

CAVE MPII Gaze360 TabletGaze

CAVE – 0.50 0.55 0.49
MPII 0.35 – 0.53 0.51

Gaze360 0.21 0.40 – 0.44
TabletGaze 0.36 0.42 0.50 –
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1-label
Test→
Train

↓

CAVE MPII Gaze360 TabletGaze

CAVE – 0.54 0.60 0.50
MPII 0.57 – 0.61 0.90

Gaze360 0.24 0.39 – 0.50
TabletGaze 0.27 0.49 0.59 –
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Table 3: Cross dataset performance evaluation among the benchmark datasets and
YouTube data in terms of MAE in both ‘2-labels’ and ‘1-label’ settings. Given any
two datasets D1 and D2, the training is performed on the train partition of D1 (i.e.
Dtrain

1 ) using the Predicted Label (PL) i.e. output of ‘2-labels’ technique Y p
ul. Further,

it is evaluated on the test partition of D2 (i.e. Dtest
2 ).

P
re
d
ic
te
d
L
a
b
el

2-labels
Test→
Train

↓

CAVE MPII Gaze360 TabletGaze

CAVE – 0.54 0.51 0.47
MPII 0.27 – 0.50 0.48

Gaze360 0.20 0.34 – 0.42
TabletGaze 0.32 0.44 0.50 –
YouTube 0.25 0.45 0.46 0.43

P
re
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d
L
a
b
el

1-label
Test→
Train

↓

CAVE MPII Gaze360 TabletGaze

CAVE – 0.55 0.54 0.50
MPII 0.30 – 0.52 0.50

Gaze360 0.23 0.37 – 0.49
TabletGaze 0.25 0.46 0.53 –
YouTube 0.30 0.52 0.49 0.45

3 Results

3.1 Cross Dataset Evaluation

We perform a cross dataset evaluation for predicting the generalization ability
of the proposed method. This evaluation is conducted in two settings: The first
configuration is a classical cross dataset evaluation protocol. In the second con-
figuration, the training is performed on the train partition of OD using the PL
i.e. output of ‘2-labels’ technique Y p

ul and it is evaluated on the test partition
of other datasets. The second configuration is conducted for cross dataset label
quality assessment of the proposed method.

The first configuration is a classical cross dataset evaluation. Given any two
datasets D1 and D2, the training is performed on the train partition of D1

(i.e. Dtrain
1 ) using the OL and ResNet-50 as backbone network. Further, it is

evaluated on test partition of D2 (i.e. Dtest
2 ). The results are shown in Table

2. In the second configuration, the training is performed on the train partition
of D1 (i.e. Dtrain

1 ) using the PL i.e. output of ‘2-labels’ technique Y p
ul, while it

is evaluated on the test partition of D2 (i.e. Dtest
2 ). The results are depicted

on Table 3. Please note that CAVE, TabletGaze and MPII do not have proper
train-validation-test partitions [12,15,6]. We train the model on D1 and evaluate
on D2. From both the Tables 2 and 3, it is observed that with the predicted label,
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Fig. 2: Impact of regularization parameters in ‘2-labels’ and ‘1-label’ settings.

the cross dataset performance is increased significantly which in turn, shows the
generalization capability of our models. Apart from generalizability, it is also
observed that the ‘1-label’ framework performs comparatively well even after it
is trained with less supervision.

For ‘in-the-wild’ data, the cross dataset performance is depicted in Table 3
for both 2-labels and 1-label frameworks. Here (Table 3), we have not fine-tuned
the model.

3.2 Ablation Studies

‘Resnet-50+FC’ Vs ‘2-labels’. We also evaluate our method against a simple
‘ResNet+FC’ trained on training partition and tested on the test partition. The
MAE is 0.39 as compared to our ResNet-50 based ‘2-labels’ framework (i.e. 0.25).
This experiment also indicates the advantage of using triplet module.

Regularization Parameters. We have also experimented with different values
of the regularization parameters. The trade-off is shown in Fig. 2. In this figure,
the overall loss is plotted against different values of λ. It indicates that the
optimal setting is achieved when all values are 1.

Computational Complexity. Quantitatively, for real world data, it takes 15
seconds (on an average) for all tasks including inference.

Fig. 3: (Left) Two sample images for which our methods generate noisy labels due
to illumination conditions and eye openness. (Right) Heuristic for gaze trajectory
selection.



6

3.3 Failure Cases

We also investigate the failure cases of our methods. The generated labels are
noisy when the illumination is dark and the eyes are not open. Fig. 3 shows a
few cases, where the correlation is low as compared to the ground truth labels.
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