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Abstract. In the supplemental material, we provide further background
information about our method as well as additional results. We start
by giving a more detailed description of our network components and
an in-depth discussion of our implementation details. Afterwards, we
perform an ablation study on some of our design choices and discuss
some of the trade-offs of our decisions. Finally, we showcase additional
results on synthetic as well as real word examples. We also evaluate
the expressiveness of our latent space by performing pose interpolation
and visualize the choice of keypoints used for reconstruction. Please also
check out our videos for further insights into the view consistency of our
method, which you find on our project page https://urs-waldmann.

github.io/NePu/.

https://urs-waldmann.github.io/NePu/
https://urs-waldmann.github.io/NePu/
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Fig. 1: Encoder architecture and hyperparameters.

1 Method Details

1.1 Architectural Details and Hyperparameters

In this section we describe our model architecture in more detail and provide
all model specific hyperparameters. Figures 1, 2 and 3 illustrate the architecture
of the encoder, decoder and renderer, respectively, and are described in the
following.

Encoder The encoder is composed of four vector self-attention layers (VSA) as
introduced in [16], which alternate with BatchNorm [5] layers, skip connections
and element-wise multi-layer perceptrons (MLPs) with two layers and one ReLU
activation function. The design of this block is inspired by transformers [15].
The number of dimensions throughout all these layers is set to df = 256 for all
experiments.

This stage retains translational equivariance, since VSA only uses relative
positional information. Furthermore, we compute VSA over the complete graph,
i.e. information is exchanged between all possible pairs of keypoints. Note that
this is a very generic approach which does not take the piece-wise rigidity of
the skeletal structure into account. Adopting a more specific network is a topic
of possible future work. One simple solution would be to pairwise compute the
positional difference xk1

−xk2
between keypoints k1 and k2 in the local coordinate

frame of k2, in a similar fashion to [14].
The resulting intermediate features f (3) ∈ RK×df for each of the K key-

points are subsequently projected to dz-dimensional space using a single linear
layer and finally reduced to z ∈ Rdz using max-pooling. For all experiments
we use dz = 1024. Note that because of this step the translation equivariance
becomes invariance.

Decoder Compressing all relevant information into a single latent vector is one
of the core competences of our model. This allows our model to learn a strong
globally consistent prior, which is crucial for our inverse rendering approach
and allows us to fit NePu to sparse observations, as briefly demonstrated in
section 3.1.
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Fig. 2: Decoder architecture and hyperparameters.

Contrary to related work that uses the global latent vector to condition a
neural field [8,11,13], we aim to benefit from ideas of recent locally conditioned
models [12,2,3]. Hence, a consequence of this compressed latent representation is
the need for a decoder, that decompresses z into locally anchored information.

For this purpose, we reconstruct keypoints x̂ using a 3-layer MLP MLPpos

with two ReLU activation functions. To tackle overfitting, we set the internal
dimensionality of MLPpos to dbottle = 128. The output dimensionality is set
to K · 3, such that we can reshape to the desired shape.

Furthermore, we obtain latent vectors f̃ using another 3-layer MLP MLPfeats.
This time, we increase the dimensionality of the hidden layers to 2 · dz and 4 · dz
respectively. The output dimension is K · df .

We interpret f̃ as local latent vector centered at the corresponding recon-
struced keypoints x̂, similar to [3]. Finally, we refine f̃ using three additional
layers of VSA. Again, the internal dimensionality is df and we use all K key-
points as neighbors.

Renderer From a technical perspective, our renderer is very similar to [3],
but has three prediction heads instead. Furthermore, we refine the features f a
second time using another refinement block, after their positions x̂ have been
projected to 2D.

The core of our renderer is the cross vector attention (CVA) module, as in-
troduced in [3], which uses the queried pixel value q ∈ [0, 1]2 and global latent

vector z as query set and the local latent vector f
(2)
2D with their positional in-

formation x∗
2D ∈ [0, 1]2 × R as key-value set. Please note that the number of

dimensions for q and x∗
2D do not match, due to the appended depth values.

We circumvent this, by appending a zero to q. In all experiments we use apply
CVA to the 12 nearest neighbors of q in normalized pixel coordinates. Again,
the internal dimensionality of CVA and the prediction heads is df = 256. For
more details about the CVA module, we refer to [3].
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Fig. 3: Renderer architecture and hyperparameters.

Positional Embedding Compared to the design of the VSA and CVA mod-
ules in [16,3], we include a sinusoidal positional encoding, as proposed in [9].
To be more specific, we do not encode the positional difference between two
keypoints xi and xj using a 2-layer MLP δ with one activation function

posxixj
= δ(xi − xj). (1)

Instead, we use

posxixj
= δ(sin(20πdij), cos(2

0πdij), . . . , sin(2
F−1πdij), cos(2

F−1πdij)), (2)

where dij = xi − xj is the positional difference between xi and xj and the
number of employed frequencies is F = 5. We ablate the effect of including this
embedding in section 2.1.

LFN Baseline In the main paper, we compare NePu with a baseline that uses
the Light Field Network (LFN) for rendering [13], which we denoted as LFN∗.
This baseline shares the encoder architecture with NePu, but lacks the decoder
and has a much simpler rendering structure which predicts color values

ĉ = FFNcol(z,posq), (3)

where the positional encoding posq is defined as in equation 2, but with q re-
placing dij . Note that q is expressed in Plücker coordinates. Depth and oc-
cupancy values are predicted equivalently. To accommodate for the loss in ex-
pressiveness due to the global conditioning, we set the internal dimensionality
of FFNcol,FFNdep and FFNsil to 512.

1.2 Implementation Details

Additional Training Hyperparameters. As mentioned in the main paper,
we sample pixels uniformly in the ground truth silhouette to compute Ldep and
Lcol on. We sample 500 points for these two losses. For Lsil we sample 1500 on the
boundary of the silhouette and perturb these points using Gaussian noise. For
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half of the points we use a small standard deviation σnear and a larger value σfar

for the other half. The specific values differ on the size of the animal with respect
to the complete frame, as well as, the shape of the subject class. In particular
we use σnear ∈ {0.05, 0.015, 0.0125, 0.015} and σfar ∈ {0.175, 0.15, 0.125, 0.15},
where the values are listed in the order of humans, pigeons, cows and giraffes.

For the LFN-based baseline we observed, that the model was not capable of
representing the silhouettes with enough detail, resulting in a disproportionate
amount of emphasis on Lsil. Hence, we eased the task by changing the sampling
strategy for Lsil to uniform sampling as done in [8], where half of the points are
sampled inside and half outside of the ground truth mask.

Additionally, we use gradient clipping with a threshold of 1.0 for all models.
Data Augmentation.
We employ two types of data augmentation. First we added Gaussian noise to

the keypoints. Depending on the object class we used a standard deviation σ ∈
{0.001, 0.0005, 0.003, 0.003} for humans, pigeons, cows and giraffes, respectively.
Second, we randomly rotate the keypoints by a multiple of 45◦ degrees around
the z-axis and shift the camera order accordingly. This way the models have
better chances to learn rotation equivariance.

Training, validation and test splits. We split our animations for each
animal in chunks of 10 time steps and randomly sample from those chunks a
training, validation and test split of 70%/10%/20%. Our synthetic human data
set contains distinct poses with no temporal connection. All samples are split
randomly to obtain a training, validation and test split of 70%/10%/20%.

1.3 Details on Inverse Rendering

To solve the inverse rendering based keypoint estimation, we use the limited
memory BFGS [10] (LM-BFGS) optimizer, when no prior information is known.
We conduct 10 steps of LM-BFGS, which takes around 14 seconds. As a com-
parison when using the Adam optimizer [7], convergence sometimes takes up to
1000 steps, which amounts to 3 minutes of runtime.

The clustering procedure described in the main paper usually results in be-
tween 20 and 25 clusters for all animal datasets and in up to 40 clusters for
the human dataset. Since rotations around the z-axis can impose problems for
the optimization (e.g. starting from an unfavourable rotation, the optimization
can easily get stuck in a local minima, where the head and tail of a pigeon are
switched) we additionally rotate each cluster in 90◦ degree steps.

Furthermore, we sample 10000 pixels for each of the eight camera views,
where half is sampled uniformly inside the observed silhouette and half out-
side. Note that this differs to our training procedure, but leads to more stable
optimization.

1.4 Details on LToHP Baseline

In their algebraic triangulation solution, the authors of [6] predict 2D keypoints
with a 2D backbone for every camera view independently. Then they learn an
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Table 1: Ablation study: Influence of the refinement, depth and sinosoidal posi-
tional embedding block on the losses. Best result per column is bold. The config-
uration that we use in our paper is highlighted in gray.

Keyp. Loss: Depth Loss: Color Loss: Mask Loss:
MPJPE [mm] MAE [mm] PSNR [dB] IoU [%]

w/o ref., w/o depth 19 32.7 18.53 97.88
w/o ref., w/ depth 24 26.2 18.53 97.86
w/ ref. w/ depth 24 24.1 18.75 98.09
w/o pos. emb. 20 30.7 16.91 94.28

Table 2: Ablation study: Influence of the dimension dz of the global representation
z on the losses. Best result per column is bold. The configuration that we use
in our paper is highlighted in gray.

Dim. Keyp. Loss: Depth Loss: Color Loss: Mask Loss:
dz MPJPE [mm] MAE [mm] PSNR [dB] IoU [%]

256 74 26.2 18.56 98.06
512 55 25.4 18.60 98.08
1024 24 24.1 18.75 98.09
2048 19 24.6 18.67 98.11

algebraic triangulation where they fuse all the 2D keypoints with the keypoints’
confidences from the 2D backbone. In their volumetric triangulation solution, the
authors predict 2D features for every camera view independently. Then they un-
project the 2D features into a cuboid volume and pass it into a 3D convolutional
neural network. The cuboid volume is set around a root joint, the pelvis.

For the volumetric model, we use either our predicted pelvis of the algebraic
solution or the ground truth pelvis because for some objects in our data set, their
algebraic model does not converge. We train both, the algebraic and volumetric
model, for 500 epochs.

2 Ablation Studies

We perform several ablation studies with our cow data set.

2.1 Hyperparameters and Architecture

We perform an ablation study on the influence of the presence and absence of
our refinement, depth and sinusoidal positional embedding blocks. Results are
presented in Table 1. We see that all three choices are essential for our framework.

We also perform an ablation study on the influence of the dimension dz of
our global representation z. Results are in Table 2. We see that dz = 1024 is the
best choice for all losses.
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Table 3: Ablation study: Influence of the number of nearest neighbours on the
losses. Best result per column is bold. The configuration that we use in our paper
is highlighted in gray.

Number Keyp. Loss: Depth Loss: Color Loss: Mask Loss:
of NN MPJPE [mm] MAE [mm] PSNR [dB] IoU [%]

2 30 29.6 17.70 97.78
4 27 27.0 18.17 98.02
8 24 24.7 18.69 98.07
12 24 24.1 18.75 98.09
16 31 23.8 18.63 98.06
25 (all) 28 23.6 18.65 98.07

Table 4: Ablation study: Influence of the number of cameras on the keypoint
estimation. Best result per column is bold. The configuration that we use in
our paper is highlighted in gray.

1 cam 2 cams 4 cams 8 cams

MPJPE [mm] 143 49 19 15

Additionally we perform an ablation study on the influence of the number of
nearest neighbours. Results are in Table 3. We see that 12 nearest neighbours is
the best choice.

2.2 Pose Estimation by Inverse Rendering

We perform an ablation study on the influence of the number of cameras and
number of sample points on our keypoint estimation. We restrict this ablation
to a maximum of eight cams since this is the number of cameras we can fit on a
GPU with 40GB for our baseline [6]. Results are in Table 4 where we sampled
10000 points. We see that the performance of our model improves with more
cameras. Furthermore it seems that a higher number of sample points leads to a
better result: 15mm (10000 sample points, cf. Tab. 4 and Table 2 in paper) vs.
32mm (only 1000 sample points).



Neural Puppeteer 9

3 Additional Results

3.1 Real World Examples

We conduct a small study on real world examples to demonstrate the flexibility
of our approach, which arises from silhouette-based model fitting and the con-
sistency provided by the global latent space. For this purpose, we fit our model
to the silhouette on a single image and render novel views from it, as illustrated
in Figs. 4 to 7.

More specifically, we choose one real world image for each subject class. Sub-
sequently, we annotate the silhouette by hand and align the silhouette with our
training setup. This includes centering the silhouette from left to right and align-
ing the floor with the training data. Furthermore, we scale the hand-annotated
silhouette to the size of subject that our model learned. Please note that we only
fit on silhouette data, thus the reconstructions show a different texture than the
input image.

(a) Input View (b) Given Mask (c) Reconstruction (d) Novel view

Fig. 4: Real world example: Pigeon. Reconstruction of a Pigeon from a single
pose.

(a) Input View (b) Given Mask (c) Reconstruction (d) Novel view

Fig. 5: Real world example: Giraffe. We take a real world image of giraffes,
generate masks for both and perform pose estimation using the silhouettes. The
view to the right shows both giraffes from a different perspective. Please note
that both giraffes were reconstructed and rendered individually. As our input
data only includes data of a drinking giraffe with its hind legs closed, the recon-
struction also has closed legs.
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(a) Input View (b) Given Mask (c) Reconstruction (d) Novel view

Fig. 6: Real world example: Cow. Reconstruction of a cow from a single
silhouette.

(a) Input View (b) Given Mask (c) Reconstruction (d) Novel view

Fig. 7: Real world example: Human. The pose estimation works well for a
single silhouette of a human subject. However, ambiguities in the silhouette lead
to a wrong rotation of the head. Multi-view data would help here with finding
for example a correct nose position.
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3.2 Synthetic Examples
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Fig. 8: Additional Results: Pigeon. The results for the pigeon are very sat-
isfactory overall. However, some details around the legs are lost as we did not
include a keypoint at the root of the claw. Thus, for example for the first pose,
the rotation of the hand is reconstructed differently.
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Fig. 9: Additional Results: Giraffe. The reconstruction of the giraffe works
very well overall. The details of the skin are well reconstructed up to a certain
frequency, with some oversmoothing occuring for high-frequency texture content,
such as at the legs. However, the quality of the results is overall substantially
better to the baseline version LFN∗ without local conditioning.
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Fig. 10: Additional Results: Cow. The additional results on the cow dataset
show the importance of the frequency of keypoints. For example, two keypoints
on the tail are most likely necessary to reliably reconstruct the curvature.
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Fig. 11: Additional Results: Human. We show four additional poses which
the network has never seen before. Our method performs well on poses similar to
ones seen in the training data, but runs into problems if ambiguities are present
from the silhouettes. For example, in Sitting the left and right leg are swapped
as they can hardly be distinguished from the silhouette alone .
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Fig. 12: Latent Space Interpolation. The structure of the latent space encodes
meaningful information about how individual poses are related to each other.
We show this by interpolating between two known poses (far left and right) in
latent space. The interpolation yields a realistic motion of the individual joints.

3.3 Latent Space Interpolation

We demonstrate the expressiveness of the pose latent space, z ∈ Rdz by evaluat-
ing the linear interpolation between two known poses in this space, and rendering
from the interpolated representation. The results can be seen in Fig. 12. More
results are demonstrated in the supplementary material.

4 Keypoint Distribution

Fig. 13: Keypoint Locations: Pigeon. The model of the pigeon includes a
total of 19 keypoints. The following keypoints are included: two each per eye,
shoulder, wing tip, knee, four per body side for the tips of all claws (3 forward
facing, one backward facing), and one each for tip of beak, root of nose, and tip
of tail feathers.
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Fig. 14: Keypoint Locations: Giraffe. The model of the giraffe includes a
total of 26 keypoints. The following keypoints are included: two each for eyes,
ears, shoulders, hips, four each for knees, heels, and hooves, one each for nose,
upper neck, lower neck, hump, middle tail and lower tail.
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Fig. 15: Keypoint Locations: Cow. The model of the cow includes a total
of 25 keypoints. The following keypoints are included: two each for eyes, ears,
shoulders, hips, four each for knees, heels, and hooves, plus one each for nose,
hump, back, middle tail and lower tail.
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Fig. 16: Keypoint Locations: Human. The model of the human includes the
same 33 keypoints as [1,4], but for the purpose of better visualization, the only
keypoint in the face we show is the nose. The following keypoints are included:
three per eye, one for each ear, corner of the mouth, shoulder, elbow, wrist,
pinky, index finger, thumb, hip, knee, ankle, heel, foot, plus the central keypoint
for the tip of the Nose.
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