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Abstract. This supplementary material provides additional content and
discussion to complement the main manuscript. First, we explain how the
pipeline model is derived into problem modeling. Second, we introduce
implementation detail. Third, we provide more quantitative and visual
results and analysis.
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1 Deriving Problem Modeling from Pipeline Model

We take [1]3 as the prototype camera pipeline model, as Figure1. We will discuss
if a specific step is related to SI-HDR, if so, further analyze its mathematical
operations to show whether it (and its reverse operation) is global or local.
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Fig. 1: Prototype camera pipeline model [1] consisting of 8 steps. Note that
some operations e.g. white balance and exposure adjustment could be practically
conducted in a different order.

Detailed operations in this precise pipeline are:

1. First, an optical system containing lens and aperture will ideally maintain
the full range of scene radiance (green box in Figure1), what HDR images
dedicate to faithfully record.

3 Newest version: https://www.eecs.yorku.ca/~mbrown/ICCV2019_Brown.html.

https://www.eecs.yorku.ca/~mbrown/ICCV2019_Brown.html
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2. Then, digital signal will be produced by sensor and its RAW processing: ISO
gain, noise reduction, defective pixel mask, black light subtraction, lineariza-
tion, lens flat-filed correction, exposure adjustment, etc. All those operations
are to ensure the signal is numerically and spatially linear to scene radiance,
which is the foundation of subsequent color manipulation. Camera noise and
dynamic range truncation (leading to over&under-exposure) are sequentially
introduced here due to sensor imperfection. Such degradations are severer
for legacy imaging devices.

3. Mosaiced achromatic response produced by color filter array (CFA) will be
demosaiced to RGB values in camera gamut primaries. SI-HDR has nothing
to do with this R1 → R3 mapping since HDR images are already demosaiced.

4. Step (4) is white balance, and could usually be ignored in SI-HDR too since
most HDR images are already white balanced4. Rigorously, if not, the RAW
response will be white balanced by applying a 3× 3 diagonal matrix:

EWB = MWBE (1)

where E = [R,G,B]T ,MWB = diag(kR, kG, kB). Obviously, matrix trans-
formation and its reverse operation are global where the result on single pixel
is not affected by its neighbors.

5. Usually, SDR image is assumed in display gamut e.g. sRGB/BT.709, while
HDR is in camera gamut RGB5. Hence, color space transform (CST) will be
conducted to convert between different color spaces using a 3× 3 matrix:

Edisp. gamut = MEWB (2)

where M ∈ R3×3. It also belongs to global operation, similar as step (4).
6. Most display gamut is smaller than camera gamut, thus some RGB value

in will fall outside the valid range after CST, i.e. ∃ Edisp. gamut /∈ [0, 1].
The simplest and most common way is clamping those out-of-gamut (OOG)
pixels to the boundary: i.e. hard-clipping [4]:

Edisp. gamut = clamp(Edisp. gamut, 0, 1) (3)

but this involves multiple-to-one R3 → R3 mapping thus its reverse operation
in SI-HDR is no longer global. Fortunately, in natural scenes, the transition
from non-OOG to OOG pixels is usually spatially continuous, therefore it’s
easy for DNN to infer OOG value from its neighbor. Reverting gamut map-
ping will become a sheer global operation only when gamut soft-mapping6

i.e. completely one-to-one mapping is applied.
4 Real-world off-the-shelf HDR images are almost generated by the multi-exposure

fusion(MEF) of RAW images. The latter are white-balanced in most cases.
5 For example, HDR images in [2, 3] i.e. our training set is in specified camera RAW

RGB primaries. Steps (5) and (6) can be ignored in SI-HDR only when assuming
HDR and SDR are in same RGB primaries (gamut).

6 In Figure1(6), we show an example replacement map of gamut soft-mapping, darker
color indicates longer distance from its original position in xy chromaticity diagram.
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7. Then, non-linearity is globally added to each pixel. Though there is a stan-
dardized gamma2.2 or BT.1886 [5] opto-electronic transfer function (OETF),
the SDR non-linearity is usually the combination of specific camera response
function (CRF) and possible aesthetic tone mapping (curve adjustment).

8. Finally, 8-bit quantization and compression (usually JPEG) are applied to
get a distribution-ready file. Multiple artifacts are introduced here: quanti-
zation artifact and blocking artifact by the 8× 8 JPEG quantization block,
etc. Recovering those artifacts involves the help of adjacent local pattern.

Ground truth (GT) HDR image could be treated as the scene radiance to be
simulated shot i.e. the start of the camera pipeline, assuming it has successfully
recorded the full luminance range. In this case, the camera pipeline is equivalent
to the HDR-to-SDR degradation, hence SI-HDR need to recover all degradation
introduced there. As analyzed above, pipeline steps (1) and (3) are unrelated to
SI-HDR; both (4), (5), (7) and their reverse ops are global; and reverting (2), (6)
and (8) belongs to local operation. Finally, those degradations/operations are
summarized into 6-step problem modeling by excluding unrelated operations.
The remainder of derivation can be found in main paper.

2 Implementation Detail

2.1 DNN Structure

In Figure3 of main paper, ‘k3s1n32’ stands for a 2D convolutional layer with
3 × 3 kernel, stride = 1, number of filters (nf) = 32, and group number = 4 if
‘g4’ is appended, and ‘FC’ means fully-connected layer.

In the large-scale branch of local network, we use ‘PixelShuffle’ [6] upsampling
at decoder end, and ‘SqEx’ (squeeze-and-excitation) block [7] at the bottleneck
to endow the DNN with channel attention on intermediate deep feature.

2.2 Degradations to Simulated Legacy SDR

Camera noise is already contained in SDR images from NTIRE [8] dataset. For
noise-free SDR images in Fairchild [2] dataset, we first linearize the normalized
nonlinear input SDR (x′), and then simulated it to camera RAW gamut (RGB
primaries) before adding noise:

xcam. gamut = M(x′1/0.45), x =

RG
B

, M =

0.6313 0.2708 0.0979
0.0368 0.7931 0.1701
0.0174 0.1488 0.8338

 (4)

Here, matrix M determines what camera gamut to be converted to. Since the
RAW gamut of real cameras largely diversifies, for simplicity, we assume a fixed
one i.e. Arri ALEXA Wide Gamut. Then, noise described in main paper is
independently added to each RGB channel of xcam. gamut. After this, we convert
linear RGB in camera gamut back to nonlinear sRGB using:

x′
w. n. = (M−1xcam. gamut w. n.)

0.45 (5)
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According to the pipeline model, compression is added lastly on noise-affected
sRGB image x′

w. n.. The first JPEG compression with QF ∼ U(60, 80) is applied
to the whole SDR image, and the second JPEG compression with fixed 75 QF is
applied when cropping training patches: For each HDR-SDR pair in training set,
we first rescale then with ×0.5, ×0.75 and ×1 factor, respectively. We randomly
crop 1(for NTIRE [8]) or 5(for Fairchild [2]) patch-pair(s) sized 600 × 600 at
each scale, and then save with fixed 75 QF JPEG compression. This ‘rescale-
and-random-patch’ double JPEG could better simulate the multiple internet
transmission than current approach e.g. staggered double JPEG on same scale
[9].

2.3 Training Detail

First, we pre-process label HDR since original HDR images from NTIRE [8] and
Fairchild [2] dataset are aligned differently: HDR images in [8] were normalized
and transferred into gamma2.2 nonlinear before 16-bit .png storage, while some
HDR images from [2] linearly record absolute luminance in .exr encapsulation.
They have to be aligned consistently for DNN training. Hence, we linearize all
HDR images from [8], and normalize those from [2] according to their max value.

Then, on each HDR-SDR patch-pair sized 600 × 600, a smaller patch sized
200× 200 is again cropped at different random positions every time the training
dataloader is called. Augmentation including orthogonal rotation and flipping are
applied, and we set batch size = 8. Parameters of adaptive moment estimation
(AdaM) optimizer are β1 = 0.9, β2 = 0.999. The total number of iterations is
set to 1.2× 106, and it takes about 3 days to finish the training on the desktop
computer with i7-4790k CPU and GTX1080 GPU.

3 Experiment Configuration and Result

3.1 Experiment Configuration

Among all competitors, HDRCNN [10] provide 2 extra checkpoints, we used the
one trained with JPEG compressed SDR. Also, due to their training set, the
output HDR from HDRUNet [11] are stored in gamma2.2 nonlinearity, hence we
linearized them for a fair comparison. Meanwhile, since HDRCNN/DHDR [12]
use UNet (encoder-decoder) of 6/8 levels, a R3×1080×1920 input is unacceptable
since its height or width could not be divided by 26−1/28−1. Hence, we zero-pad
input SDR during their inference phase and delete those padded pixels as the
final result. Also, when counting their MACs, we choose input R3×1088/1024×1920

with a similar number of elements for HDRCNN/DHDR. Finally, result HDR
(ȳ) from all competitors is normalized according to their maximum value.

Note that metric VDP [13] require HDR images in absolute luminance, we
therefore assume a peak luminance of 1000cd/m2 for all normalized output HDR
(ȳ) and GT HDR (y), i.e.

ȳlum. = 1000× ȳ

max(ȳ)
, ylum. = 1000× y

max(y)
(6)
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were used to compute VDP. Also, we set its ‘viewing condition’ as ‘side-by-side’,
0.5m from 24” 1920× 1080 monitor (32.45pixel/◦).

3.2 Ablation Studies Configuration

When testing the impact of conventional degradations, we are supposed to re-
move all camera noise for training SDR. Therefore, for NTIRE [8] dataset where
noise is already contained in SDR, we managed to find their original HDR frames
from the footage of HdM-HDR [3] dataset, and degraded them to clean version
using same HDR-to-SDR degradation as in [14].

When examining the effect of HDR-exclusive degradation (over and under-
exposure), we changed the original training set [2, 8] to HDR-LFNet [15]. For
this dataset, we ultilized 2480 pairs of 600× 600 patches.

3.3 More Visual Comparison

Since the pixel energy/value of normalized linear HDR image is more concen-
trated in lower part, HDR images will appear dim if directly visualized. To simu-
late the HDR viewing on conventional SDR display, we tone-map all GT&result
HDR images by MATLAB function localtonemap() with default parameters.

We provide more visual comparison for the following reason: Better metrics
only represent method’s capability of generating HDR with closer luminance dis-
tribution with GT, could not yet manifest its degradation (over&under-exposure,

HDRCNN[11] (18.50dB) ExpandNet[12] (7.57dB) SingleHDR[13] (13.25dB) DHDR[14] (6.54dB) HDRUNet[15] (8.65dB)

FHDR[23] (5.52dB) HDR-LFNet[42] (4.05dB) RempelEO[17] (13.39dB) ours (37.17dB) HDR GT (PU-PSNR)
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(a) As seen, higher metrics mainly represent closer estimated luminance with GT,
meaning a method is better for image-based lighting (IBL) application.

HDRCNN[11] (0.6644) ExpandNet[12] (0.6704) SingleHDR[13] (0.8566) DHDR[14] (0.3263) HDRUNet[15] (0.7128)

FHDR[23] (0.3799) HDR-LFNet[42] (0.2981) RempelEO[17] (0.4551) ours (0.6568) HDR GT (PU-SSIM)
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(b) Our method performs normally under this scene, however, still gets a plausible
score. This means pixel value exerts an undue impact even on structure-related SSIM.

Fig. 2: Recovered luminance of outdoor and indoor scenes.
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noise, and compression) recovery ability. This phenomenon was proven in main
paper, [16] and [17], and further confirmed by Figure2.

Visual comparisons are provided in Figure3-5 with analysis on their title.
Take Figure3(red arrow) and Figure4(green arrow) for example, while other
DNNs are able to recover at least a few lost information, the output over-exposed
area from ExpandNet [18] and HDR-LFNet [15] do not share much difference
with SDR. The cause for ExpandNet is its ‘Trad. TMO’ ‘degradation’ model
with insufficient degradation ability. For HDR-LFNet, it’s because their DNN
just polishes the result of traditional expansion operators (EOs), from where the
lost information was never recovered.

Since our method is designed to additionally tackle legacy SDR, we start
assess the capability of removing noise and compression artifact. As far as de-
noising is concerned, HDRUNet [11] and ours are better since they’re trained
so. In Figure3(green arrow), 4(red arrow) and 5, SingleHDR outperforms other
methods not trained to denoise and decompression, because their degradation
model actually contains noise and compression, but to a lesser degree7 than ours.

So far, conclusion can be drawn that: (1) Better performance of SingleHDR,
HDRUNet and our method on noise-and-compression-affected area confirm the
importance of conventional degradation on joint-task SI-HDR, and (2) the lack
of information recovery ability of ExpandNet further proves the significance of
HDR-exclusive degradation on universal SI-HDR.

References

1. Karaimer, H.C., Brown, M.S.: A software platform for manipulating the camera
imaging pipeline. In: Proc. ECCV. (2016) 429–444

2. Fairchild, M.D.: The hdr photographic survey. In: Color and imaging conference.
Volume 2007. (2007) 233–238

3. Froehlich, J., Grandinetti, S., et al.: Creating cinematic wide gamut hdr-video for
the evaluation of tone mapping operators and hdr-displays. Digital photography X
9023 (2014) 279–288

4. ITU: Report ITU-R BT.2407-0: Colour gamut conversion from Recommendation
ITU-R BT.2020 to Recommendation ITU-R BT.709. (2017)

5. ITU: Recommendation ITU-R BT.1886: Reference electro-optical transfer function
for flat panel displays used in HDTV studio production. (2011)

6. Shi, W., Caballero, J., Huszár, F., et al.: Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network. In: Proc. CVPR.
(2016) 1874–1883

7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proc. CVPR. (2018)
7132–7141

8. Pérez-Pellitero, E., et al.: Ntire 2021 challenge on high dynamic range imaging:
Dataset, methods and results. In: Proc. CVPR. (2021) 691–700

7 Their: {JPEG QF ∼ U(85, 100), Poisson-Gaussian noise w. σp ∼ U(0, 0.0013)+σg ∼
U(0, 0.0005)}, ours: {JPEG QF ∼ U(60, 80) + 75, noise with σ ∼ U(0.001, 0.003)}.
We did not consider SingleHDR as joint-denoise&decompression since (1) the extent
of degradation is small, and (2) the author didn’t hold such motive.



LHDR: HDR Reconstruction for Legacy Content, Supplementary Material 7

SDR Input HDRCNN ExpandNet
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FHDR HDR-LFNet RempelEO

HDR GTours

Scene:
‘bistro_091827’ in [48]

(‘0260’ in [46])
QF = 70+75

Fig. 3: When recovering large area of over-exposure (red arrow), ours and HDR-
CNN [10] are relatively better, DHDR [12] and HDRUNet [11] produce strange
pattern, while the rest methods almost fail to hallucinate lost information.
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SDR Input HDRCNN ExpandNet

SingleHDR DHDR HDRUNet

FHDR HDR-LFNet RempelEO

HDR GTours

Scene:
‘car_fullshot_132760’ in [48]

(‘0880’ in [46])
QF = 64+75

Fig. 4: Methods’ performance on over-exposure (green arrow) consistent with
Figure3, while only ours and HDRUNet [11] suppress the noise and compression
in dark area (red arrow).
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SDR Input HDRCNN ExpandNet

SingleHDR DHDR HDRUNet

FHDR HDR-LFNet RempelEO

HDR GTours

Scene:
‘Cemetery Tree’ in [47]

QF = 69+75

Fig. 5: When it comes to severer noise and compression, all methods fail. Ours
is sightly better in that artifact is ‘smoothed’, while HDRUNet [11] tend to
overprocess.
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