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In this supplementary material, we provide:

1. More Experimental Results on
1-1) SMOKE (Figs. 1 to 2)
1-2) O-HAZE (Fig. 3)
1-3) commonly used test foggy image (Figs. 4 to 5)

2. More Discussion on
2-1) Structure Representations (Fig. 6)
2-2) Grayscale Feature Multiplier
2-3) Uncertainty Map

3. Training and Network Architecture
3-1) real clean reference images (Fig. 7)
3-2) synthetic fog images and their clean ground truth (Fig. 8)
3-3) self-collected smoke images (Fig. 9)

† Our data and code is available at: https://github.com/jinyeying/FogRemoval
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1 More Experimental Results on

Figs. 1 to 2 show our results on real dense and/or non-uniform fog, in comparison
with the state-of-the-art CNN-based methods and transformer-based method [1,
2]. Our results are more robust in removing fog, and better preserving the back-
ground information than baselines. We collected real dense and/or non-uniform
fog data by ourselves. We use a fog machine to generate fog, where we fix the
camera pose to record fog data and paired ground truth. Totally we collected
12 pairs of data for evaluation, shown in Fig. 9. The quantitative evaluation is
shown in Table. 1.

Table 1. Quantitative Evaluation on self-collected daytime smoke data.

Methods PSNR↑ SSIM↑
Input 13.06 0.36

Dehamer’22 [1] 13.27 0.36

DehazeFormer’22 [2] 13.25 0.36

D4’22 [3] 9.62 0.10

PSD’21 [4] 11.01 0.29

NLD [10] 11.81 0.33

4KDehazing’21 [5] 12.42 0.36

EPDN [9] 12.76 0.39

MSBDN [6] 13.19 0.34

DAN [7] 14.06 0.42

GDN [8] 15.19 0.53

Ours 18.83 0.62
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Input Ours Dehamer’22 [1] DehazeFormer’22 [2]

D4’22 [3] PSD’21 [4] 4KDehazing’21 [5] MSBDN [6]

DAN [7] GDN [8] EPDN [9] NLD [10]

Input Ours Dehamer’22 [1] DehazeFormer’22 [2]

D4’22 [3] PSD’21 [4] 4KDehazing’21 [5] MSBDN [6]

DAN [7] GDN [8] EPDN [9] NLD [10]

Fig. 1. Visual result comparisons of different methods: the state-of-the-art CNN-based
methods and transformer-based methods in dense and/or non-uniform fog and smoke.
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Input Ours Dehamer’22 [1] DehazeFormer’22 [2]

D4’22 [3] PSD’21 [4] 4KDehazing’21 [5] MSBDN [6]

DAN [7] GDN [8] EPDN [9] NLD [10]

Fig. 2. Visual result comparisons of different methods: the state-of-the-art CNN-based
methods and transformer-based methods in dense and/or non-uniform fog and smoke.
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Input Ours Dehamer’22 [1] DehazeFormer’22 [2]

D4’22 [3] PSD’21 [4] 4KDehazing’21 [5] MSBDN [6]

DAN [7] GDN [8] EPDN [9] NLD [10]

Fig. 3. Visual result comparisons of different methods: the state-of-the-art CNN-based
methods and transformer-based methods in O-HAZE.
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Input Ours Dehamer’22 [1] DehazeFormer’22 [2]

D4’22 [3] PSD’21 [4] 4KDehazing’21 [5] MSBDN [6]

DAN [7] GDN [8] EPDN [9] NLD [10]

Fig. 4. Visual result comparisons of different methods: the state-of-the-art CNN-based
methods and transformer-based methods in dense and/or non-uniform fog and smoke.
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Input Ours Dehamer’22 [1]

DehazeFormer’22 [2] D4’22 [3] PSD’21 [4]

4KDehazing’21 [5] MSBDN [6] DAN [7]

GDN [8] EPDN [9] NLD [10]

Input Ours Dehamer‘22 [1]

DehazeFormer’22 [2] D4’22 [3] PSD’21 [4]

4KDehazing’21 [5] MSBDN [6] DAN [7]

GDN [8] EPDN [9] NLD [10]

Fig. 5. Visual result comparisons of different methods: the state-of-the-art CNN-based
methods and transformer-based methods in dense and/or non-uniform fog and smoke.
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2 More iscussioniscussion on

2.1 Structure Representations

(a) Input I (b) S(ĴY) (a) Input I (b) S(ĴY)

Fig. 6. We can observe that (b) DINO-ViT representations capture structure
scene/object parts (e.g. boxes, balls, trees, buildings).

2.2 Grayscale Feature Multiplier

The consistency between the grayscale feature multiplier and the colorful fea-
ture multiplier is based on the Gray World assumption. Under the Gray World
assumption, the whole world objects are gray and the color of all objects is just
a reflection of the atmospheric light. Therefore, we can rewrite Eq.1 in the main
paper into:

I(x) = (α(x)A) t(x) + (1− t(x))A, (1)

where α(x) is the reflectivity of the objects in the scene. Note that under the
Gray World assumption, the reflectivity of a gray object has the same value
for all three RGB channels, which means the colorful image and corresponding
grayscale image shall share the same reflectivity.

Next, we can take out the A from the right side of Eq. 1:

I(x) = (α(x)t(x) + 1− t(x))A. (2)

Based on Eq. 1, we can write the definition of the feature multiplier to:

M(x) =
I(x) + t(x)A−A

I(x)t(x)
, (3)

M(x) =
(α(x)t(x) + 1− t(x))A + t(x)A−A

(α(x)t(x) + 1− t(x))At(x)
, (4)

and we can simplify the Eq. 4 by canceling the term of atmospheric light A:

M(x) =
(α(x)t(x) + 1− t(x)) + t(x)− 1

(α(x)t(x) + 1− t(x)) t(x)
. (5)

This Eq. 5 can be regarded as the new definition of the feature multiplier under
the Gray World assumption [11]. With this definition, we can easily observe
that the feature multiplier shall keep consistency after converting to a grayscale
domain from a colorful domain.
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2.3 Uncertainty Map

Inspired by [12, 13], it is a common assumption that the clean domain output
Ĵ shall follow a Laplace distribution where the mean of this distribution is the
ground truth Jgt. Under this assumption, we can have a likelihood function as
follows:

p =
1

2θ
exp(−

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
), (6)

where θ is the variance of this Laplace distribution.
In our implementation, we definite this variance as the uncertainty of this

output Ĵ. Therefore, Eq. 6 includes both outputs generated by our multi-task
network, and we can design an uncertainty loss to constrain them based on Eq. 6.
We Take the natural logarithm of both sides of Eq. 6, we can obtain:

ln p = ln(
1

2θ
exp(−

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
)), (7)

ln p = −

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
+ ln(

1

2θ
), (8)

ln p = −

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
− ln θ– ln 2. (9)

Then, an uncertainty loss could be designed such that minimizing this loss
is reformulated as maximizing the likelihood in Eq. 9:

arg max
θ
−

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
− ln θ– ln 2 = arg max

θ
−

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
− ln θ. (10)

The ln 2 term is a constant that does not affect the maximization of the likeli-
hood, which can be ignored.

For the first term in this likelihood −‖
Ît−Igt‖

1

θt
, we simply convert the nega-

tive sign to positive and put into the loss function. For the second term − ln θ,
if we just converted the negative sign to positive similar to the first term, the
loss value would be negative when the value of the uncertainty map θ was in
the range [0,1], and there would be a negative infinite when the value of the
uncertainty map θ was zero. Therefore, we need to modify this term with a bias.
Since we want the uncertainty map θ to be in the range [0,1], we add a constant
threshold after converting the negative sign to positive: ln(θt + 1).

In summary, this uncertainty loss is designed as follows:

Lunc =

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
+ ln(θ + 1). (11)



10 Y. Jin, W. Yan et al.

Fig. 7. Examples of clean reference images for training.

Synthetic fog training images

Synthetic clean training images

Fig. 8. Examples of synthetic fog/clean image pairs used for supervised loss in training.

3 Training and Network Architecture

The generators of our gray network and color network have similar encoder-
decoder network architectures, the only difference is the input and output chan-
nel numbers of the first and the last layers (one for the gray network and three
for the color network). Our generators are based on the ResNet architecture [15],
which is effective for regression problems. The encoder has nine ResNet blocks,
and the input size is 512 × 512 due to the memory constraint of our GPUs.
It contains a sub-network to generate the feature multiplier from the encoded
features, which is built with one ResNet block and located behind the encoder.
Our generators have two decoders that generate output and uncertainty map
respectively, which have three deconv layers. The discriminators are multi-layer
networks consisting of three stride layers, a step size of two, whose final feature
dimension is reduced to (H/8,W/8). Thus, our discriminator follows the prac-
tice of [16]. We initialize the convolution layers with random values and train
all the weights for 50K iterations using a mini-batch size of 16. The network is
optimized using the Adam method [18] with learning rate 2×10−4 and β1 = 0.9.
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Smoke training images

Clean training images

Smoke testing images

Clean testing clean images

Fig. 9. Examples of self-collected smoke images.

(a) Input I (b) Ground Truth (c) Ours

Fig. 10. Testing results on synthetic fog images.



12 Y. Jin, W. Yan et al.

References

1. Guo, C.L., Yan, Q., Anwar, S., Cong, R., Ren, W., Li, C.: Image dehazing trans-
former with transmission-aware 3d position embedding. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2022) 5812–
5820

2. Song, Y., He, Z., Qian, H., Du, X.: Vision transformers for single image dehazing.
arXiv preprint arXiv:2204.03883 (2022)

3. Yang, Y., Wang, C., Liu, R., Zhang, L., Guo, X., Tao, D.: Self-augmented un-
paired image dehazing via density and depth decomposition. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2022)
2037–2046

4. Chen, Z., Wang, Y., Yang, Y., Liu, D.: Psd: Principled synthetic-to-real dehaz-
ing guided by physical priors. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. (2021) 7180–7189

5. Zheng, Z., Ren, W., Cao, X., Hu, X., Wang, T., Song, F., Jia, X.: Ultra-high-
definition image dehazing via multi-guided bilateral learning. In: 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2021)
16180–16189

6. Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.H.: Multi-
scale boosted dehazing network with dense feature fusion. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2020) 2157–
2167

7. Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image de-
hazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. (2020) 2808–2817

8. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: Attention-based multi-scale
network for image dehazing. In: Proceedings of the IEEE/CVF international con-
ference on computer vision. (2019) 7314–7323

9. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. (2019) 8160–8168

10. Berman, D., Treibitz, T., Avidan, S.: Single image dehazing using haze-lines. IEEE
transactions on pattern analysis and machine intelligence 42 (2018) 720–734

11. Buchsbaum, G.: A spatial processor model for object colour perception. Journal
of the Franklin institute 310 (1980) 1–26

12. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for
computer vision? Advances in neural information processing systems 30 (2017)

13. Ning, Q., Dong, W., Li, X., Wu, J., Shi, G.: Uncertainty-driven loss for single
image super-resolution. Advances in Neural Information Processing Systems 34
(2021) 16398–16409

14. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. (2016) 3213–3223

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
(2016) 770–778

16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. (2017) 1125–1134



Structure Representation and Uncertainty Feedback for Fog Removal 13

17. Lai, W.S., Huang, J.B., Yang, M.H.: Semi-supervised learning for optical flow with
generative adversarial networks. In: Advances in Neural Information Processing
Systems. (2017) 354–364

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)


