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1 Implementation details

Code base and GPUs. We implement FSMLgpr, FSMLyamr, and CRML
on top of the code base from [2]!. To implement FSMLy;Tr,, we heavily borrow
the core part from its public implementation from [14]2. We use Nvidia TitanXP
GPUs for experiments. Our code is available at https://github.com/hesedjds/FSML

Training details. To train models on minilmageNet [10], CUB [15], the cross-
domain setting [2], and miniDeepFashion datasets, we use Adam optimizer [5]
with learning rate 1072 from scratch unlike most conventional metric learn-
ing methods use ImageNet [6] pre-trained models. To train models on MPII
dataset [1] for human pose retrieval, we train models using Adam with learn-
ing rate 5-10~* on top of ImageNet [11] pre-trained models. For FSMLytar,
we meta-update the initialization using Adam optimizer with the learning rate
1073, For FSMLyr1,, we meta-update the initialization of the last layer and
scaling and shifting (SS) parameters using Adam optimizer with the learning
rate 1073 for SS parameters and 10~ for the initialization of the last layer from
pre-trained model by the conventional deep metric learning procedure on meta-
training set D™ In the experiments on more than 5-way meta-testing settings,
we meta-train FSMLyiamr, FSMLyrr,, and CRML with 5-way episodes to limit
the extensive memory consumption.

Inference details. To construct meta-test episodes, we randomly sample N
classes from C. Among all instances in C, we set a support set S as random
NK instances, and a prediction set P as the rest to simulate a database in
conventional metric learning. For miniDeepFashion, we randomly sample an
attribute in the test attribute set, and then we compose an episode with S and
P similarly as above. For (meta-)testing, we average model performances on 600
(meta-)test episodes for N = 5 and 50 for N > 5. For 20-way experiments on
miniDeepFashion, we average model performances on 200 (meta-)test episodes.
The class labels for each attribute are shown in Table S11. We use (meta-)test
episode statistics for batch-normalization layers [3] during (meta-)testing.

! https://github.com/wyharveychen,/CloserLookFewShot
2 https://github.com/yaoyao-liu/meta-transfer-learning
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Fig. S1: 5-way K-shot mAP and recall@1 on minilmageNet. Performances with K =0
indicate performances before online adaptation.

Evaluation metrics for MPII Since the dataset is labeled with continuous
real values, we employee two metrics defined on continuous labels following [7]:
mean pose distance (mPD) and a modified version of normalized discounted
cumulative gain (nDCG). The mPDj, evaluates the mean pose distance between
a query and k nearest images. The modified nDCGy, evaluates the rank of the &k
nearest images and their relevance scores.

k
1 ori
D - -5 - 1
nDCGy(q) Z ;Zl gy 1) (1)

where Zj, is a normalization factor so that the maximum nDCGj becomes 1 and
r; = —logy(|lyq — yill, + 1) is the pose distance between the query ¢ and the i*"
nearest images. log,(i + 1) is a discounting factor to give a higher weight to a
higher rank.

2 Results of K-shot experiments

We conduct K-shot experiments with K = {0, 5,10} to see the effect of increas-
ing number of target samples. Figure S1 shows the results of 5-way 5-shot and
10-shot on minilmageNet when the multi-similarity loss is used. The perfor-
mances with K = 0 indicate the performances from meta-learned initializations
(FSMLyamL, FSMLyrr,, and CRML) or the pre-trained model by conventional
metric learning (FSMLgpr) before adaptation. All proposed four few-shot metric
learning methods take advantage with increasing numbers of labels used. Note
that CRML outperforms the three few-shot metric learning baselines on both
image retrieval performance metrics including the performances before online
adaptation. The comprehensive evaluation metrics with confidence intervals are
provided in Table 1 and 2 In these tables, we refer to the cross-entropy loss and
the multi-similarity loss [16] as CE and MS, respectively. “Pre-trained” refers to
the pre-trained model trained by meta-training set of minilmagenet using cross-
entropy loss and evaluated the distance embedding right before the classifier.
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Table 1: mAP (%) and Recall@K (%) on minilmageNet.

5-way 5-shot

Loss Method mAP Recall@1 Recall@2 Recall@4 Recall@8
Pre-trained  48.30 £ 0.51  72.85 + 0.48 83.75 £ 0.32 91.10 + 0.17 95.64 £+ 0.08
Baseline 53.14 + 0.57 74.04 £ 0.49 84.19 £ 0.32 91.01 + 0.17 95.27 + 0.08

CE Baseline++ 65.22 &+ 0.69 78.97 £ 0.49 86.88 + 0.32 91.83 + 0.18 95.03 £ 0.09
MAML 57.03 + 0.54 75.81 £ 0.47 86.16 £ 0.31 92.48 + 0.17 96.10 + 0.08
MTL 47.93 £ 0.61 58.58 +£ 0.62 74.01 + 0.48 86.03 + 0.29 93.45 + 0.13
DML 46.90 + 0.45 73.52 £ 0.46 84.10 + 0.30 91.24 + 0.16  95.68 £+ 0.08

FSMLsgT 63.34 & 0.66  78.57 £ 0.47 85.65 £ 0.30 91.77 £ 0.17  95.05 + 0.09
MS FSMLmamrL 65.86 £ 0.60 79.77 £ 0.48 87.54 4+ 0.27 92.24 + 0.16  95.20 £ 0.09
FSMLmTL 56.50 &+ 0.55  77.19 £ 0.43 86.71 £ 0.27 92.61 £ 0.15 96.10 + 0.07
CRML 69.15 + 0.62 83.22 + 0.41 89.91 £+ 0.25 93.83 + 0.14 96.24 + 0.08

Table 2: mAP (%) and Recall@K (%) on minilmageNet.

5-way 10-shot

Loss Method mAP Recall@1 Recall@2 Recall@4 Recall@8
Pre-trained  47.06 £ 0.47 72.32 + 0.46 83.32 £ 0.30 90.88 £ 0.17 95.53 £+ 0.08
Baseline 56.57 + 0.56  76.21 £+ 0.45 85.50 £ 0.30 91.51 + 0.16 95.34 + 0.08

CE Baseline++ 71.51 + 0.62 81.52 £+ 0.43 88.26 4+ 0.28 92.32 + 0.17 94.97 £+ 0.10
MAML 57.15 + 0.54 76.18 £ 0.47 86.31 £ 0.30 92.48 + 0.17 96.08 + 0.08
MTL 52.96 + 0.59 64.45 + 0.60 78.34 £ 0.44 88.36 + 0.25 94.42 + 0.12
DML 45.74 £ 0.40 73.08 £ 0.43 83.68 + 0.29 90.95 + 0.16 95.53 £+ 0.08

FSMLsgT 68.33 + 0.60 80.73 £ 0.42 87.80 £ 0.27 92.17 £ 0.16  95.02 £ 0.09
MS FSMLmamr 69.59 £ 0.61 81.42 £ 0.43 88.36 & 0.27 92.51 + 0.16  95.15 £ 0.09
FSMLmTL 57.36 = 0.56  78.03 £ 0.44 87.15 £ 0.27 92.72 £ 0.14 96.02 + 0.07
CRML 73.75 + 0.61 84.82 £+ 0.40 90.67 £ 0.24 94.09 + 0.13 98.25 + 0.07

3 Performance with confidence intervals

From Table S3 to S10, we provide all detailed quantitative results rounded up to
the second digit after the decimal point as well as their 95% confidence intervals
together which are not in the main paper. In these tables, we refer to the triplet
loss [12], the lifted structured loss [13], and the multi-similarity loss as TR, LS,
and MS, respectively. We refer to the conventional metric learning and few-shot
metric learning as DML. We extensively verify that the few-shot metric learning
improve mAP and Recall@K from deep metric learning models regardless of
losses or datasets used as well as CRML outperforms the few-shot metric leaning
baselines. Note that we empirically find that proxy-based losses [9, 4] are hardly
optimized from scratch and overfit to a support set during online adaptation,
resulting in poor performances on a prediction set. Thus, we cannot report the
result with the state-of-the-art proxy-based losses.

4 Qualitative results

From Fig. S2 to S9, we compare the conventional deep metric learning (DML),
FSMLyawmr, as a representative few-shot metric learning baseline, and CRML
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by demonstrating each of their 8-nearest-neighbor retrieval results and t-SNE [8]
visualization in a grid.

The results suggest that retrieval of DML relies on superficial aspects of im-
ages, e.g., background and color only, since it does not adapt on target classes
online. For example, given a query of a scoreboard in Fig. S2, DML fails to re-
trieve other scoreboards and instead get superficially similar images having sim-
ilar grid visuals or the sunset background, whereas CRML successfully captures
the context from lighting and play scores in scoreboards. Also, DML confuses
image similarity with the majority of pixels in background colors or bird shapes,
and FSMLyam, retrieves visually similar birds of inaccurate species in Fig. S3.
In contrast, CRML captures class-specific information by a few-shot adaptation
and retrieves correct images. Especially, in miniDeepFashion examples (Fig. S4
and S5), DML is misled by similar colors or shapes without adapting to target
attributes, only retrieving images of common patterns for category and texture.
In contrast, CRML adapts to attribute-specific data, thus retrieving correct im-
ages.

Figures S8 and S9 show t-SNE visualization of the adapted embedding space
on category and texture attributes, respectively. They show that FSML success-
fully learns attribute-specific embedding spaces.
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Fig. S2: Retrieval results on minilmageNet [10]. The leftmost images are queries, and
the right eight images are top-eight nearest neighbors. Red bounding boxes are negative
images, and green boxes are positive. Best viewed in pdf.
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Fig. S3: Retrieval results on CUB [15]. The leftmost images are queries, and the right
eight images are top-eight nearest neighbors. Red bounding boxes are negative images,
and green boxes are positive. Best viewed in pdf.



