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A Reproducibility

A.1 Training Protocol

For the experiments we follow the same train, test and validation splits as [3].
Instead of using ImageNet pre-trained models, we use the same randomly ini-
tialized ERFNet in all our experiments. For optimization we utilize SGD with
wight decay factor of 3 x 1074, momentum of 0.9 and an initial learning rate
of 0.07 for the first task and 5 x 10~* for the second task. The learning rate
is divided by 2 if the validation loss is not reducing for 8 consecutive epochs.
We train the model in each task for 100 epochs with a batch size of 16. After
training on the entire task sequence the model is evaluated on the validation set
of PascalVoc2012. During training we use the same augmentations as [3], but
use the implementations of Albumentations.

A.2 Continual Hyperparameter Selection

To select the hyperparameters for the continual learning methods we follow the
Continual Hyperparameter Framework of 7], by firstly choosing the appropriate
learning rate that achieves the highest accuracy on the new task and consecu-
tively tuning the specific continual learning hyperparameters. This lead to the
following hyperparameters for the respective methods:

Fine-Tuning: lrg = 0.07, Ir; =5 x 107*
— EWCS: X\ = 10000

— MAS: X = 5000

LwF: A=6, T =2

MiB: A =25, a=1

For all methods we use the same Irg = 0.07 and Ir; = 5x10~%. In the experiments
with UNCE and Weight Normalization we use the exact same parameters.

A.3 Implementation:

All of our experiments are conducted using PyTorch in combination with Pytorch
Lightning. We use the original PyTorch implementation of ERFNet provided by
[36] which can be found at: https://github.com/Eromera/erfnet. The implemen-
tation of the unbiased cross-entropy loss is taken from [3], which can be found at:
https://github.com/fcdl94/MiB. For the continual learning algorithms we adapt
the implementation of [25] for the use in semantic segmentation. The reference
code can be found at: https://github.com/mmasana/FACIL.

6 In order to use such a high value for A we clip the gradient norm at a value of 10 to
avoid exploding gradients.
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A.4 Decoder Retraining

For Decoder Retraining we freeze all layers of the encoder of f; and set them in
evaluation mode. We train the decoder with SGD with weight decay factor of
3 x 1074, momentum of 0.9. We use an initial learning rate of 0.07, but replace
the learning rate schedule of the previous experiments with a cosine annealing
learning rate schedule. The model is trained for 30 epochs on the PascalVoc-2012.

A.5 Training Split Sizes

The number of images in each training subset are: Overlapped - [T1: 9568, T2:
2145], Disjoint - [T1: 8437, T2: 2145], Full-Disjoint - [T1: 8437, T2: 1014].

B Results for different CNN-Architectures

We validated our findings on the widely adopted U-Net [37] and DeepLabv3+
[4] each with ResNet101 Backbones, compare Table 5. When using the cross-
entropy loss (CE) the results of the different architectures are similar, because the
information of old classes is completely overwritten, as the models are optimized
to assign the background class to old classes. However, when using UNCE we
see that the models with higher learning capacity can retain much more of the
information of old classes than the smaller ERFNet, leading to much better
results for DeepLabv3+. In the full-disjoint setting the use of the UNCE loss
does not lead to significant improvements even for DeepLabv3+ and U-Net. This
further strengthens our observations of the role of the background class. When
looking at the internal representation shifts in Fig. 7, DeepLabv3+ behaves
similar to ERFNet, as it retains high similarity throughout the network and
suffers from a sudden drop in similarity in the layers of the decoder. On the
other hand, for U-Net even early layers (starting from layer 10) are affected by a
representation shift. A likely explanation are the skip-connections that connect
early layers directly to decoder layers in the network. This also shows that the
architecture choice has a significant impact on the internal representation drift.
Future research directions could investigate how the recent trends in neural
architectures impact the internal representation drift during continual learning,
specifically recently proposed normalization layers and vision transformer are of
high interest.

Table 5: Results of Semantic Segmentation on Pascal-VOC 2012 in Mean IoU
(%) on the disjoint and full disjoint settings.

PascalVoc 15-5 - (disjoint) PascalVoc 15-5 - (full-disjoint)
CE UNCE CE UNCE
Method 0-15 16-20|all|0-15 16-20| all |0-15 16-20|all|0-15 16-20| all
ERFNet [36] 46 23.0[9.0[10.4 21.8 [131[ 5.1 16.3 [7.8| 6.0 155 | 8.3
DeepLabV3+ [4]| 4.6 24.7 [9.4|21.4 23.7 |21.9| 5.7 16.8 7.9 5.7 16.2 | 8.2
UNet[37] 4.6 25.6 9.6/12.7 25.3 |15.7) 5.3 16.2(7.9| 6.1 16.6 | 8.6
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Fig. 7: Activation drift between f; to fy measured with Frankenstein Networks
for DeepLabv3+ [4] (left) and U-Net [37] (right).

C Dr. Frankenstein with and without Stitching Layer

We also compare the results of layer stitching with and without the additional
1 x 1 convolutional layer in Fig. 8. The stitching layer is initialized with least-
squares-matching and optimized with cross-entropy loss, as described in [5]. The
most notable difference between two Dr. Frankenstein variants is the initial drop
in similarity in the early layers that we observe only with the additional stitching
layer. This was also reported in the experiments by the authors of Dr. Franken-
stein, but as of now there is no explanation why no high accuracy stitching can
be learned for those layers [5]. However, with the exception of the unexpected
high dissimilarity in early layers, both variants show the same trends: high sim-
ilarity in the encoder; sudden drop of similarity from layer 17 to 18 for MAS;,
EWC and Fine-Tuning and highest similarity at final layer by MAS-UNCE and
LwF. However, we also note that from layer 4-15 the addition of the stitching
layer leads to higher similarity, while for the decoder layers we observe lower
similarity compared to Dr. Frankenstein without the stitching layer.

D Dr. Frankenstein vs. Centered Kernel Alignment

Centered Kernel Alignment (CKA) [20] is a similarity index that measures the
similarity between internal representation of neural networks. In continual learn-
ing CKA has recently been used to measure the activation drift of the interme-
diate layers of a neural network [33]. Csiszarik et al. [5] investigated the re-
lationship between representational similarity that is measured by CKA and
functional similarity measured by Dr. Frankenstein. They demonstrate that a
high CKA score between activations does not infer that the networks have func-
tional similarity. Meaning that high functional similarity can be retained while
simultaneously the representational similarity measured by CKA decreases. In
Fig. 9 we compare the functional similarity measured by Dr. Frankenstein and
the representational similarity measured by CKA. In line with previous assump-
tions the CKA analysis also confirm that the representations of the first 4 layers
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Fig.8: Activation drift between f; to fy measured by Dr. Frankenstein with an
additional 1x1 convolutional stitching layer (left) [5] and w/o the stitching layer,
as used in the paper (right).

are not affected by representational drift. However, in the decoder we observe
that the representational drift between fy and f; for EWC and MAS is not as
pronounced as for the measured by Dr. Frankenstein. This indicates that the
activations only undergo a minor change in terms of representational distance,
but that these minor activation changes have a severe impact on the functional
similarity of the model.

E Visualization of the Bias Values of the Classification
Layer

The bias towards most recent classes and the background manifests itself in the
bias values of the final convolution layer. The visualization in Fig. 10 demon-
strates that all methods have obvious increased bias values for the background
class and classes of T, with the exception of LwF in the Disjoint setting. How-
ever, once old classes disappear from the background of the images in the Full
Disjoint setting LwF shows similarly high bias values for new classes as well.

F Confusion Matrices PascalVoc-15-5

In the following we show all the confusion matrices for the Overlapped, Disjoint
and Full-Disjoint setting. The confusion matrices clearly illustrate that in the
Full-Disjoint the background bias is much less pronounced whereas the class
confusion is more severe.
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