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Appendix

A Computation of x̄′

Algorithm 1 Convex hull projection

1: procedure projection(X,Y )
2: Dataset X ∈ Rl×d ▷ l samples with extrinsic dimension d
3: Labels Y ∈ Nl

4: for j in 1 · · · l do: ▷ Iterate over all samples in X
5: x′

j ← X[j]
6: y′

j ← Y [j]
7: for y in unique(Y ) \ y′

j do: ▷ Iterate over unique labels in Y other than y′
j

8: {xi}di=1 ← d-NearestNeighbours(x′, y, d) ▷ NNs of x′
j with label y

9: Sj ← {x1, ..., xd, x
′
j} ▷ Lin. sep. set of cardinality |Sj | = d+ 1

10: h← SupportVectorClassifier(S) ▷ Get max-margin hyperplane
11: x̂← OrthogonalProjection(x′, h) ▷ Project on max-margin hyperplane
12: x̄← Reflection(x̂, h) ▷ Reflect around projection
13: r′j(y)← ||x′

j − x̄′
j ||2 ▷ r′j for x′

j and class y
14: rj(y)← ||x′

j − x1||2 ▷ rj for x′
j and class y

15: r′j ← mini ({r′j(yi)}) ▷ Minimal r′j over all classes
16: rj ← mini ({rj(yi)}) ▷ Minimal rj over all classes

17: R∗ ← minj∈1,...,l({r′j}) ▷ Minimal r′j over all samples

We consider all samples x′
j ∈ X for j = 1, ..., l. The orthogonal projection

of x′
j onto the convex hull of its d nearest neighbours of another class label

C({xi}di=1) is defined as

x̄′
j := argminx̂∈C({xi}d

i=1)
||x′

j − x̂||2 s.t.

x̂ =

d∑
i=1

wixi, 0 ≤ wi ≤ 1,

d∑
i=1

wi = 1

We derive x̄′
j by training a support vector classifier [75] (SVC) on the corre-

sponding set Sj := {x1, ..., xd, x
′
j}. As the cardinality of |Sj | is equal to the VC-

dimension of a linear classifier, i.e. d+ 1, the SVC obtains zero error and maxi-
mizes the marginm between x′

j and {xi}di=1. It simply follows that 2m = r′j ≤ rj ,
where rj = 2m implies that x̄′

j = x1. Computation of x̄′
j is straightforwardly done

by orthogonally projecting x′
j onto the hyperplane learned by the SVC. Then,

the reflection of x′
j around this projection yields x̄′

j which implies 2m = r′j . This
computation is efficient and deterministic. It is outlined in Algorithm 1.

B Computation of x̄′ for Sj ̸= d + 1

Defining Sj such that |Sj | > d + 1 might results in sets that are not linearly
separable and our analysis is not be applicable to those. Defining Sj such that
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Table 6: Results for |Sj | = 2. The bound r′j is vacuous and the results falsely
contradict the experimental findings in Section 5.

R 0.5R R∗ Rcrit {x̄}critlocal
|{x̄}critlocal|
l(c−1)

{x̄}critglobal

|{x̄}critglobal|
l(c−1)

CIFAR-10 2.751 1.375 2.313 1.682 0 0.000 0 0.000

(a) Density of rj for all x′
j ∈ X. (b) Density of r′j for all x′

j ∈ X.

Fig. 6: Distributions of rj and r′j .

|Sj | < d + 1 results in a vacuous r′j because it might not be the smallest lower
bound any more. For illustration we display the results for CIFAR-10 in Table
6 where |Sj | = 2, so x′

j is projected onto the line segment of its two nearest
neighbours x1 and x2. As one can see, r′j is a vacuous bound on the perturba-
tion magnitude and the results falsely contradict the experimental findings of
Section 5.

C Additional statistics

In Figure 6 we display the densities of rj and r′j for all used datasets. One can
observe that the distributions have similar shapes but different modes, except
for the SVHN dataset.

In Figure 7 we display the empirical cumulative distribution function of rcritj

for all datasets.
In Figure 8 we display for every sample x′

j ∈ {x̄}critglobal the label of x′
j and

the distribution of labels of the corresponding x̄′
j inherited from the label of the

samples {xi}di=1. For SVHN one can observe that the critical samples lie on close
proximity to several if not all samples of other classes. This uniform distribution
of distances is also visible in Figures 6 and 7. Contrary, for CIFAR-10 only
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Fig. 7: Cumulative distribution of rcritj for all x′
j ∈ X.

the classes airplane, bird, deer, frog and ship contain critical samples {x̄}critglobal

and the nearest neighbours come from a few dominating classes. For the critical
samples with labels bird and ship, for example, the corresponding {xi}di=1 are
of classes airplane with a relative frequency of 41.7% and 43.6%, respectively.
This might be due to the common uniform background of shades of blue or grey
shared by these samples. This observation highlights that robust radii need to
be chosen class dependent.

D Relationship with DeepFool

An adversarial example xadver
j of model f is defined as a sample for which f(xj) ̸=

f(xadver
j ) while ||xj − xadver

j ||p ≤ δ. DeepFool [76] is an algorithm that finds an
adversarial examples while minimizing the perturbation δ.

If we assume to have a perfectly robust model f with robust radius of ≥ 0.5r′j
for every sample (for complex datasets: = 0.5r′j) then the closest point on the
decision boundary is precisely in the middle of the line segment between x′

j and
x̄′
j , with distance 0.5r′j from both. As the model’s gradient points towards the

direction of steepest ascent, it points towards the closest point on the decision
boundary. As the model is perfectly robust the minimum distance to this point
is 0.5r′j and the point on the decision boundary is exactly the aforementioned
middle of the line segment between x′

j and x̄′
j . Thus, this middle of the line

segment should also be the adversarial sample xadver
j that is found by DeepFool,

as DeepFool minimizes the introduced perturbation magnitude. As a result, more
robust models should have the vectors x̄′

j−x′
j and xadver−x′

j being more aligned.
We compute the cosine similarities

c̃j = cosine(xadver − x′
j , x̄

′
j − x′

j) ∈ [−1, 1] (14)
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(a) SVHN. (b) CIFAR-10.

Fig. 8: Class pairs for x′
j and their corresponding x̄′

j for x′
j ∈ {x̄}critglobal.

for all samples xj ∈ X and display the distributions for the robust and non-
robust neural network pairs. We observe that for the robust models the distribu-
tions contain significantly more positive values, even though those are nowhere
near being perfectly robust. Thus, our method could be used in conjunction with
DeepFool to investigate the distance and shape of the decision boundary around
the critical points which are those that determine the introduction of label noise
and the complexity of the decision boundary.

E Labelling Errors in SVHN

SVHN’s [70] original train set contains three wrongly labelled samples that need
to be removed before the computations in Section 4. Those are displayed in
Figure 10.

F Additional Experimental Results for SVHN

In Figure 11 we present the results for SVHN when {x̄}critglobal are added to the

original train set. As |{x̄}critglobal| = 2, 501 (see Table 1), the addition of globally
critical points to the train set make a non-negligible difference. Thus, gener-
alization performance is decreased when perturbation magnitudes δ ≥ R∗ are
introduced. This affirms the hypothesis in Section 5 that the reason for the
visibly unchanged performance for CIFAR-10 is the comparably low number of
{x̄}critglobal (see Figure 14). Thus, robust training for δ ≥ R∗, so the addition of

{x̄}critglobal to the train set, also negatively affects CIFAR-10 training.

In Figure 12 we display the results when {x̄}critlocal are added to the original
train set. We observe the same results as for the the addition of {x̄}critglobal for
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Fig. 9: Distribution of cosine similarities between x̄′
j − x′

j and xadver − x′
j .

SVHN and the addition of {x̄}critlocal for CIFAR-10 to the original train sets. In
all cases generalization performance deteriorates.

G Additional Experimental Results for FASHION

The FASHION dataset does not contain any {x̄}critglobal, so 0.5R is its actual robust
radius. In Figure 13 we observe no difference in train and test performance
when the {x̄}critlocal are added to the original train set. This result is expected as
R∗ > 0.5R and the dataset is known to be simple and well separated which is
further proven in Figure 18 as there is no class change between x′

j and their
associated x̄′

j .

H Additional Experimental Results for CIFAR-10

In Figure 14 we display the results when trained with the addition of {x̄}critglobal.

As |{x̄}critglobal| = 132, no difference in train and test performance is measurable.

In Table 7 we display predictions and confidences on {x̄}critlocal and observe
the same results as described in Section 4. Firstly, robust models predict more
images to have undergone a class change than non-robust models and thus having
a more complex decision boundary. Secondly, robust models display significantly



Comparing Complexities of Decision Boundaries for Robust Training 25

(a) (b) (c)

Fig. 10: Labelling errors in the original SVHN train set. (a) Index : 11933,
label : 5. (b) Index : 25235, label : 9. (c) Index : 65043, label : 1.

(a) (b)

Fig. 11: Results for SVHN. Error-bars denote minimum and maximum over five
runs. (a) Mean accuracy on Xorg

train during training with {x̄}critglobal. (b) Mean

accuracy on Xorg
test during training with {x̄}critglobal.

lower confidences on low-density samples compared to their non-robust counter
parts and so a better calibrated.

In Figure 15 we display example images from CIFAR-10 when applied the
noise- and blur-corruptions provided by Hendrycks et al. [14].

I Further Examples of x̄′

For SVHN we display random {x̄}critglobal Figure 16 and random {x̄}critlocal in Fig-

ure 17. For FASHION we display random {x̄}critlocal in Figure 18 and for CIFAR-10
we display random {x̄}critlocal in Figure 19.

J Choice of the Robust Models

The particular choice of robust models was made because of computational rea-
sons. The provided architectures have moderate numbers of parameters so re-
training to remove their robust representation can be done on a single standard
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(a) (b)

Fig. 12: Results for SVHN. Error-bars denote minimum and maximum over five
runs. (a) Mean accuracy on Xorg

train during training with {x̄}critlocal. (b) Mean accu-
racy on Xorg

test during training with {x̄}critlocal.

(a) (b)

Fig. 13: Results for FASHION. Error-bars denote minimum and maximum over
five runs. (a) Mean accuracy on Xorg

train during training with {x̄}critlocal. (b) Mean
accuracy on Xorg

test during training with {x̄}critlocal.

GPU with vanilla mini-batch gradient descent and Adam [73]. The robust pre-
trained models are obtained from Croce et al. [72].

K Architecture of Convolutional Networks

The convolutional networks used for the experiments in Section 5 consist of five
convolutional layers with batch normalization [84] and a single fully-connected
layer with ReLU [85–87] activations implemented in pytorch [88]. Training was
done with Adam [73] for 35 epochs and a batch-size of 128. No data augmentation
or pre-training is used as to not distort the results.



Comparing Complexities of Decision Boundaries for Robust Training 27

(a) (b)

Fig. 14: CIFAR-10. Error-bars denote minimum and maximum over five runs.
(a) Mean accuracy on Xorg

train during training with {x̄}critglobal. (b) Mean accuracy

on Xorg
test during training with {x̄}critglobal.

Fig. 15: Examples images for the noise and blur perturbations provided by
Hendrycks et al. [14] in Table 5. Images on the far left side are the original
ones.

Fig. 16: Example image-pairs of {x̄}critglobal (right) their associated x′
j (left) for

SVHN. Multiple x′
j are associated with elements from {x̄}critglobal for different

classes.
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Table 7: Predictions and confidences of model f for {x̄}critlocal for CIFAR-10. Con-
fidence values are reported as: mean± standard deviation. NCC denotes no pre-
dicted class change by f and CC denotes a predicted class change between x′

j

and x̄′
j ∈ {x̄}critlocal.

Model f
f(x′

j) = f(x̄′
j) (NCC) f(x′

j) ̸= f(x̄′
j) (CC)

Fraction Confidence Fraction Confidence

Addepalli et al. [77]
Non-robust 0.43 0.872 ± 0.169 0.57 0.796 ± 0.194
Robust 0.58 0.447 ± 0.144 0.42 0.331 ± 0.092

Andriushchenko et al. [66]
Non-robust 0.32 0.913 ± 0.148 0.68 0.824 ± 0.184
Robust 0.62 0.479 ± 0.164 0.38 0.370 ± 0.115

Augustin et al. [78]
Non-robust 0.32 0.849 ± 0.177 0.68 0.784 ± 0.190
Robust 0.62 0.373 ± 0.162 0.38 0.270 ± 0.102

Ding et al. [7]
Non-robust 0.34 0.864 ± 0.169 0.66 0.798 ± 0.190
Robust 0.57 0.904 ± 0.151 0.43 0.774 ± 0.194

Engstrom et al. [79]
Non-robust 0.34 0.839 ± 0.179 0.66 0.776 ± 0.191
Robust 0.57 0.495 ± 0.182 0.43 0.372 ± 0.120

Hendrycks et al. [55]
Non-robust 0.32 0.898 ± 0.143 0.68 0.847 ± 0.165
Robust 0.40 0.869 ± 0.171 0.61 0.788 ± 0.197

Kireev et al. [80]
Non-robust 0.30 0.827 ± 0.181 0.70 0.785 ± 0.193
Robust 0.37 0.838 ± 0.188 0.63 0.756 ± 0.212

Modas et al. [81]
Non-robust 0.34 0.921 ± 0.138 0.66 0.868 ± 0.167
Robust 0.46 0.528 ± 0.165 0.54 0.420 ± 0.148

Rade et al. [82] (ddpm)
Non-robust 0.35 0.895 ± 0.146 0.64 0.850 ± 0.167
Robust 0.65 0.615 ± 0.181 0.35 0.446 ± 0.137

Rade et al. [82] (extra)
Non-robust 0.29 0.878 ± 0.160 0.71 0.805 ± 0.179
Robust 0.53 0.490 ± 0.146 0.47 0.380 ± 0.103

Rebuffi et al. [56]
Non-robust 0.30 0.841 ± 0.170 0.70 0.780 ± 0.180
Robust 0.65 0.569 ± 0.185 0.35 0.410 ± 0.128

Rice et al. [67]
Non-robust 0.35 0.906 ± 0.149 0.65 0.843 ± 0.185
Robust 0.57 0.626 ± 0.196 0.43 0.466 ± 0.156

Wong et al. [83]
Non-robust 0.35 0.888 ± 0.158 0.65 0.816 ± 0.182
Robust 0.56 0.535 ± 0.179 0.44 0.414 ± 0.131

Fig. 17: Example image-pairs of {x̄}critlocal (right) their associated x′
j (left) for

CIFAR-10. Multiple x′
j are associated with elements from {x̄}critlocal for different

classes.
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Table 8: Predictions and confidences of model f for {x̄}critglobal for CIFAR-10.
Confidence values are reported as: mean± standard deviation. NCC denotes no
predicted class change by f and CC denotes a predicted class change between
x′
j and x̄′

j ∈ {x̄}critglobal. Full version of Table 2.

Model f
f(x′

j) = f(x̄′
j) (NCC) f(x′

j) ̸= f(x̄′
j) (CC)

Fraction Confidence Fraction Confidence

Addepalli et al. [77]
Non-robust 0.64 0.925 ± 0.134 0.36 0.817 ± 0.170
Robust 0.91 0.499 ± 0.128 0.09 0.281 ± 0.039

Andriushchenko et al. [66]
Non-robust 0.62 0.887 ± 0.154 0.38 0.708 ± 0.192
Robust 0.79 0.535 ± 0.164 0.21 0.373 ± 0.098

Augustin et al. [78]
Non-robust 0.58 0.813 ± 0.192 0.42 0.666 ± 0.169
Robust 0.95 0.314 ± 0.162 0.05 0.243 ± 0.051

Ding et al. [7]
Non-robust 0.52 0.913 ± 0.171 0.48 0.826 ± 0.174
Robust 0.93 0.979 ± 0.057 0.07 0.791 ± 0.113

Engstrom et al. [79]
Non-robust 0.56 0.757 ± 0.215 0.44 0.571 ± 0.181
Robust 0.86 0.537 ± 0.189 0.14 0.338 ± 0.113

Hendrycks et al. [55]
Non-robust 0.50 0.907 ± 0.144 0.50 0.778 ± 0.173
Robust 0.76 0.905 ± 0.150 0.24 0.749 ± 0.161

Kireev et al. [80]
Non-robust 0.50 0.814 ± 0.195 0.50 0.726 ± 0.200
Robust 0.61 0.905 ± 0.151 0.39 0.691 ± 0.209

Modas et al. [81]
Non-robust 0.60 0.900 ± 0.155 0.40 0.768 ± 0.176
Robust 0.68 0.632 ± 0.155 0.32 0.419 ± 0.125

Rade et al. [82] (ddpm)
Non-robust 0.51 0.815 ± 0.178 0.49 0.601 ± 0.190
Robust 0.95 0.670 ± 0.176 0.05 0.488 ± 0.068

Rade et al. [82] (extra)
Non-robust 0.52 0.867 ± 0.181 0.48 0.608 ± 0.182
Robust 0.75 0.603 ± 0.153 0.25 0.413 ± 0.102

Rebuffi et al. [56]
Non-robust 0.50 0.844 ± 0.177 0.50 0.650 ± 0.171
Robust 0.94 0.643 ± 0.202 0.06 0.389 ± 0.083

Rice et al. [67]
Non-robust 0.54 0.863 ± 0.168 0.46 0.677 ± 0.204
Robust 0.92 0.635 ± 0.200 0.08 0.401 ± 0.072

Wong et al. [83]
Non-robust 0.43 0.873 ± 0.183 0.57 0.707 ± 0.185
Robust 0.74 0.645 ± 0.187 0.26 0.458 ± 0.095

Fig. 18: Example image-pairs of {x̄}critlocal (right) their associated x′
j (left) for

FASHION. Multiple x′
j are associated with elements from {x̄}critlocal for different

classes.
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Fig. 19: Example image-pairs of {x̄}critlocal (right) their associated x′
j (left) for

CIFAR-10. Multiple x′
j are associated with elements from {x̄}critlocal for different

classes.


