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1 Proof of Theorem 4

In this section, we prove Theorem 4. We compare Pre-LN Transformer and
Res-Post-LN transformer in Table [I} o indicates an activation function, and
Wit e Rdmxd and W2! € R¥%4m are weight parameters in MLP. To calculate
analytically, the hidden dimension d,, and the feature dimension d are considered
identical in MLP. We denote the output feature Yifs at i-th position of the /-th
layer, where Yf’f.s is a real-valued tensor of dimension d with i =1,2,...,n and
[=12,...,L.

Lemma 1. For the Res-Post-LN transformer with initialized weights, E(||Ylfff’l.||§) <
2[(21 = 1)d? +1d] for all 1 > 0 and i.

Proof of Lemma 1 We first estimate the expectation of ||erjz‘s||§ for I > 0. Since
ILN()||% = d by Lemma 2 in [1],
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Table 1: Pre-LN Transformer v.s. Res-Post-LN Transformer

Pre-LN Transformer Res-Post-LN Transformer
Ylpre,l — LN(Ylpre) eres,l — LN(ereS)
YPre? = MSA(YP™h) Yyo? = MSA(YF®)
Yres,3 _ LN(Yres,Q)
1 - 1
Ylprc,3 - Ylprc + Ylprc,Q eres,4 — eres + eres,3
Ylpre,4 - LN(YIpre,S) ercs,5 — LN(YIrCS’4)

Ylpre,5 — O'(YlpreAWl’l +b1,l)w2,l +b2,l eres,G — O.(eresytr)wl,l +b1,l)w2,1 +b2,l

Y[res,? — LN(eres,G)

pre _ ypre,b pre,3 res _ yres,4 res,7
Vi =Y 7 +Y Yia =Y 7 +y

. . ybre,1 _ pre . . yres,1 _ res
Final LN : Y, * = LN(YZ+1 ) Final LN : Y.~ = LN(YH_1

In a similar way, we have
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Then, we have E(”erfii”%) < 2[(21-1)d?+1d], which is bounded by E(||erfil.||§) <
o(1d?).

Proof of Therorem 4 The loss of the Res-Post-LN Transformer can be de-
scribed as:
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Using back-propagation, the gradient of L(Y5" i) with respect to the last layer
weights WL can be written as
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Here, b%! is initialized to be 0 and [O'(Yzef’5W1’L)]p denotes the p—th element
of o(Y zef’E’Wl’L). The absolute value can be bounded by as follows:
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According to Lemma 2 in [I], ||Y£e?’5||§ = d and [Y]ief’5W1’L]p obeys normal
distribution N(0, 1), we can have the following inequality using Chernoff bound
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We have o-([Yie?’E’Wl’L]p)2 < 2In100d with probability at least 0.99, for all

yres [|2_g[yres |2

p=1,2,...,d. Since with probability 1 — 6(e), i L”I’é:ll;res” ”L;“Hzl
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Y75 115 < (1+ €)E|Y; ;5. Using Lemma 5 in [1], we have
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So we have
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Thus
oL i dL dlnd
ooz llF = |l —1z > < O( )
ow? Pl Bqu agL
We can have the following result with probability at least 0.99 — 6(€) - 5=
taking ag = % for the Res-Post-LN transformer
0L dln
ool <0G )

Since d and d,, are identical, we have

oL dmIndy,
ol < 0

The above inequality corresponds to Theorem 4 in the main paper.
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