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1 Proof of Theorem 4

In this section, we prove Theorem 4. We compare Pre-LN Transformer and
Res-Post-LN transformer in Table 1. 𝜎 indicates an activation function, and
𝑊1,𝑙 ∈ R𝑑𝑚×𝑑 and 𝑊2,𝑙 ∈ R𝑑×𝑑𝑚 are weight parameters in MLP. To calculate
analytically, the hidden dimension 𝑑𝑚 and the feature dimension 𝑑 are considered
identical in MLP. We denote the output feature 𝑌 res

l,𝑖 at 𝑖-th position of the 𝑙-th
layer, where 𝑌 res

l,𝑖 is a real-valued tensor of dimension 𝑑 with 𝑖 = 1, 2, . . . , 𝑛 and
𝑙 = 1, 2, . . . , 𝐿.

Lemma 1. For the Res-Post-LN transformer with initialized weights, E(∥𝑌 res
𝑙+1,𝑖 ∥

2
2) ≤

2[(2𝑙 − 1)𝑑2 + 𝑙𝑑] for all 𝑙 > 0 and 𝑖.

Proof of Lemma 1 We first estimate the expectation of ∥𝑌 res
𝑙,𝑖

∥22 for 𝑙 > 0. Since

∥LN(·)∥22 = 𝑑 by Lemma 2 in [1],

E(∥𝑌 res
𝑙,𝑖 ∥

2
2) = E(∥𝑌 res

1,𝑖 +
𝑙−1∑︁
𝑘=1

(LN(𝑌 res,2
𝑘,𝑖

) + LN(𝑌 res,6
𝑘,𝑖

))∥22)

≤ E(∥𝑌 res
1,𝑖 +

𝑙−1∑︁
𝑘=1

LN(𝑌 res,2
𝑘,𝑖

) +
𝑙−1∑︁
𝑘=1

LN(𝑌 res,6
𝑘,𝑖

)∥22)

≤ E(∥𝑌 res
1,𝑖 ∥22) + E(∥

𝑙−1∑︁
𝑘=1

LN(𝑌 res,2
𝑘,𝑖

)∥22) + E(∥
𝑙−1∑︁
𝑘=1

LN(𝑌 res,6
𝑘,𝑖

)∥22)

≤ 2(𝑙 − 1)𝑑
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Table 1: Pre-LN Transformer v.s. Res-Post-LN Transformer

Pre-LN Transformer Res-Post-LN Transformer

𝑌
pre,1
𝑙

= LN(𝑌pre
𝑙

) 𝑌
res,1
𝑙

= LN(𝑌 res
𝑙

)
𝑌
pre,2
𝑙

= MSA(𝑌pre,1
𝑙

) 𝑌
res,2
𝑙

= MSA(𝑌 res
𝑙

)
𝑌
res,3
𝑙

= LN(𝑌 res,2
𝑙

)
𝑌
pre,3
𝑙

= 𝑌
pre
𝑙

+ 𝑌pre,2
𝑙

𝑌
res,4
𝑙

= 𝑌 res
𝑙

+ 𝑌 res,3
𝑙

𝑌
pre,4
𝑙

= LN(𝑌pre,3
𝑙

) 𝑌
res,5
𝑙

= LN(𝑌 res,4
𝑙

)
𝑌
pre,5
𝑙

= 𝜎(𝑌pre,4
𝑙

𝑊1,𝑙 + 𝑏1,𝑙)𝑊2,𝑙 + 𝑏2,𝑙 𝑌
res,6
𝑙

= 𝜎(𝑌 res,5
𝑙

𝑊1,𝑙 + 𝑏1,𝑙)𝑊2,𝑙 + 𝑏2,𝑙

𝑌
res,7
𝑙

= LN(𝑌 res,6
𝑙

)
𝑌
pre
𝑙+1 = 𝑌

pre,5
𝑙

+ 𝑌pre,3
𝑙

𝑌 res
𝑙+1 = 𝑌

res,4
𝑙

+ 𝑌 res,7
𝑙

Final LN : 𝑌
pre,1
Final

= LN(𝑌pre
𝑙+1 ) Final LN : 𝑌 res,1

Final
= LN(𝑌 res

𝑙+1)

In a similar way, we have

E(∥𝑌 res
𝑙+1,𝑖 ∥

2
2) = E(∥𝑌

res,4
𝑙,𝑖

∥22) + E(∥𝑌
res,7
𝑙,𝑖

∥22) + 2E(𝑌 res,7
𝑙,𝑖

𝑌
res,4 T
𝑙,𝑖

)

= E(∥𝑌 res
𝑙,𝑖 ∥

2
2) + E(∥𝑌

res, 3
𝑙,𝑖

∥22) + E(∥𝑌
res,7
𝑙,𝑖

∥22) + 2E(𝑌 res,7
𝑙,𝑖

𝑌
res,4 T
𝑙,𝑖

)
≤ 2(𝑙 − 1)𝑑 + 2𝑑 + 2(2(𝑙 − 1)𝑑2 + 𝑑2)
≤ 2[(2𝑙 − 1)𝑑2 + 𝑙𝑑]

Then, we have E(∥𝑌 res
𝑙+1,𝑖 ∥

2
2) ≤ 2[(2𝑙−1)𝑑2+𝑙𝑑], which is bounded by E(∥𝑌 res

𝑙+1,𝑖 ∥
2
2) ≤

O(𝑙𝑑2).

Proof of Therorem 4 The loss of the Res-Post-LN Transformer can be de-
scribed as:

L̃(𝑌 res
Final,1, . . . , 𝑌

res
Final,𝑛) =

1

𝑛

𝑛∑︁
𝑖=1

L(𝑌 res
Final,𝑖)

Using back-propagation, the gradient of L(𝑌 res
Final, 𝑖) with respect to the last layer

weights 𝑊2,𝐿 can be written as

𝜕L(𝑌 res
Final,𝑖)

𝜕𝑊
2,𝐿
𝑝𝑞

=
𝜕L(𝑌 res

Final,𝑖)
𝜕𝑌 res

Final,𝑖

𝜕𝑌 res
Final,𝑖

𝜕𝑌 res
𝐿+1,𝑖

𝜕𝑌 res
𝐿+1,𝑖

𝜕𝑌
res,7
𝐿,𝑖

𝜕𝑌
res,7
𝐿,𝑖

𝜕𝑌
res,6
𝐿,𝑖

𝜕𝑌
res,6
𝐿,𝑖

𝜕𝑊
2,𝐿
𝑝𝑞

=
𝜕L(𝑌 res

Final,𝑖)
𝜕𝑌 res

Final,𝑖

J𝐿𝑁 (𝑌 res
𝐿+1,𝑖)J𝐿𝑁 (𝑌 res,6

𝐿,𝑖
) (0, 0, . . . , [𝜎(𝑌 res,5

𝐿,𝑖
𝑊1,𝐿)] 𝑝 ,

. . . , 0, 0)𝑇
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Here, 𝑏2,𝑙 is initialized to be 0 and [𝜎(𝑌 res,5
𝐿,𝑖

𝑊1,𝐿)] 𝑝 denotes the 𝑝−th element

of 𝜎(𝑌 res,5
𝐿,𝑖

𝑊1,𝐿). The absolute value can be bounded by as follows:

|
𝜕L(𝑌 res

Final,𝑖)

𝜕𝑊
2,𝐿
𝑝𝑞

| ≤ ∥
𝜕L(𝑌 res

Final,𝑖)
𝜕𝑌 res

Final,𝑖

∥2∥J𝐿𝑁 (𝑌 res
𝐿+1,𝑖)∥2∥J𝐿𝑁 (𝑌 res,6

𝐿,𝑖
)∥2

∥(0, 0, . . . , [𝜎(𝑌 res,5
𝐿,𝑖

𝑊1,𝐿)] 𝑝 , . . . , 0)∥2

= ∥
𝜕L(𝑌 res

Final,𝑖)
𝜕𝑌 res

Final,𝑖

∥2∥J𝐿𝑁 (𝑌 res
𝐿+1,𝑖)∥2∥J𝐿𝑁 (𝑌 res,6

𝐿,𝑖
)∥2

| [𝜎(𝑌 res,5
𝐿,𝑖

𝑊1,𝐿)] 𝑝 |

According to Lemma 2 in [1], ∥𝑌 res,5
𝐿,𝑖

∥22 = 𝑑 and [𝑌 res,5
𝐿,𝑖

𝑊1,𝐿] 𝑝 obeys normal
distribution 𝑁 (0, 1), we can have the following inequality using Chernoff bound

Pr[| [𝑌 res,5
𝐿,𝑖

𝑊1,𝐿] 𝑝 | ≥ 𝑎0] ≤ exp(−
𝑎20

2
)

Pr[𝜎( [𝑌 res,5
𝐿,𝑖

𝑊1,𝐿] 𝑝)2 ≥ 2 ln 100𝑑] ≤ 0.01

𝑑

We have 𝜎( [𝑌 res,5
𝐿,𝑖

𝑊1,𝐿] 𝑝)2 ≤ 2 ln 100𝑑 with probability at least 0.99, for all

𝑝 = 1, 2, . . . , 𝑑. Since with probability 1 − 𝛿(𝜖), | ∥𝑌res
𝐿+1,𝑖 ∥

2
2−E∥𝑌res

𝐿+1,𝑖 ∥
2
2 |

E∥𝑌res
𝐿+1,𝑖 ∥

2
2

≤ 𝜖 , we have

∥𝑌 res
𝐿+1,𝑖 ∥22 ≤ (1 + 𝜖)E∥𝑌 res

𝐿+1,𝑖 ∥22. Using Lemma 5 in [1], we have

Pr[∥𝑌 res
𝐿+1,𝑖 ∥22 ≤ 𝛼0E∥𝑌 res

𝐿+1,𝑖 ∥22]

≤
(1 + 𝜖)E∥𝑌 res

𝐿+1,𝑖 ∥22 − E∥𝑌 res
𝐿+1,𝑖 ∥22

(1 + 𝜖 − 𝛼0)E∥𝑌 res
𝐿+1,𝑖 ∥22

=
𝜖

1 + 𝜖 − 𝛼0

which equals

Pr[∥𝑌 res
𝐿+1,𝑖 ∥22 ≥ 𝛼0E∥𝑌 res

𝐿+1,𝑖 ∥22] ≥ 1 − 𝜖

1 + 𝜖 − 𝛼0

Using union bound, we have with probability 0.99 − 𝛿(𝜖) − 𝜖
1+𝜖 −𝛼0

|
𝜕L(𝑌 res

Final,𝑖)

𝜕𝑊
2,𝐿
𝑝𝑞

|2 = O(
[
∥J𝐿𝑁 (𝑌 res

𝐿+1,𝑖)∥22∥J𝐿𝑁 (𝑌 res,6
𝐿,𝑖

)∥22 | [𝜎(𝑌 res,5
𝐿,𝑖

𝑊1,𝐿)] 𝑝 |2
]
)

≤ O( 2𝑑2 ln 100𝑑

∥𝑌 res
𝐿+1,𝑖 ∥22∥𝑌

res,6
𝐿,𝑖

∥22
) ≤ O( 𝑑2 ln 𝑑

𝛼0E∥𝑌 res
𝐿+1,𝑖 ∥22E∥𝑌

res,6
𝐿,𝑖

∥22
) ≤ O( ln 𝑑

𝛼0𝐿𝑑
)

So we have

| 𝜕L̃
𝜕𝑊

2,𝐿
𝑝𝑞

|2 = | 1
𝑛

𝑛∑︁
𝑖=1

𝜕L(𝑥resFinal,𝑖)

𝜕𝑊
2,𝐿
𝑝𝑞

|2 = O( ln 𝑑

𝛼0𝐿𝑑
)
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Thus

∥ 𝜕L̃
𝜕𝑊2,𝐿

∥𝐹 =

√√√ 𝑑∑︁
𝑝,𝑞=1

| 𝜕L̃
𝜕𝑊

2,𝐿
𝑝𝑞

|2 ≤ O(

√︄
𝑑 ln 𝑑

𝛼0𝐿
)

We can have the following result with probability at least 0.99 − 𝛿(𝜖) − 𝜖
0.9+𝜖

taking 𝛼0 = 1
10 , for the Res-Post-LN transformer

∥ 𝜕L̃
𝜕𝑊2,𝐿

∥𝐹 ≤ O(
√︂

𝑑 ln 𝑑

𝐿
)

Since 𝑑 and 𝑑𝑚 are identical, we have

∥ 𝜕L̃
𝜕𝑊2,𝐿

∥𝐹 ≤ O(
√︂

𝑑𝑚 ln 𝑑𝑚
𝐿

)

The above inequality corresponds to Theorem 4 in the main paper.
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