
A Diffusion-ReFinement Model for
Sketch-to-Point Modeling
(Supplementary Material)

Di Kong, Qiang Wang, and Yonggang Qi(�)

Beijing University of Posts and Telecommunications, Beijing, China
{dikong,wanqqiang,qiyg}@bupt.edu.cn

1 Extended Derivations

We present the extended derivations of the training objective in main paper
Equation (4). For the sake of brevity, we use the distribution with respect to
the entire point cloud X0. Since the points in a point cloud are independently
sampled from a distribution, the probability of the whole point cloud is simply
the product of the probability of each point:

q(X1, ..., XT |X0) =

N∏
i=1

q(x1
i , ..., x

T
i |x0

i) ,

pθ(X
0, ..., XT |zs) =

N∏
i=1

pθ(x
0
i , ..., x

T
i |zs) .

Having formulated the forward and reverse sampling processes for point
clouds, we will formalize the training objective of the reverse sampling process
for point cloud generation as follows.

The goal of training the reverse sampling process is to maximize the log-
likelihood of the point cloud: E[logpθ(X0)]. However, since directly optimizing
the exact log-likelihood is intractable, we instead maximize its variational lower
bound:

E[logpθ(X0)] ≥ Eq[log
pθ(X

0, ..., XT , zs)

q(X1, ..., XT |X0)
]

= Eq[logp(X
T) +

T∑
t=1

log
pθ(X

t−1|Xt, zs)

q(Xt|Xt−1)
] .

The above variational bound can be adapted into the training objective L to
be minimized :

L(θ) = Eq[

T∑
t=2

DKL(q(X
t−1|Xt, X0)||pθ(Xt−1|Xt, zs))

− logpθ(X
0|X1, zs)] .

2 D. Kong et al.

And we present the detailed adaptation process as follows.

Eqdata
[logpθ(X

0)] =

∫
qdata(X

0)[log

∫
pθ(X

0, ..., XT , zs)dX
1:T dzs]dX

0

≥ log

∫
qdata(X

0)pθ(X
0:T , zs)dX

1:T dzsdX
0 (Jensen′sinequality)

≥
∫

qdata(X
0)q(X1:T |X0)log

pθ(X
0:T , zs)

q(X1:T |X0)
dX1:T dzsdX

0 (ELBO)

Note that X1:T and zs are conditionally independent on X0,

=

∫
qdata(X

0)q(X1:T |X0)[logp(XT) + logp(zs)

+

T∑
t=1

logpθ(X
t−1|Xt, zs)−

T∑
t

logq(Xt|Xt−1)]dX0:T dzs

=

∫
qdata(X

0)q(X1:T |X0)[logp(XT) + logp(zs)

+

T∑
t=1

log
pθ(X

t−1|Xt, zs)

q(Xt|Xt−1)
]dX0:T dzs

Since q(Xt|Xt−1) is intractable, we rewrite it using Bayes’ rule,

=

∫
qdata(X

0)q(X1:T |X0)[logp(XT) + logp(zs)

+

T∑
t=2

log
pθ(X

t−1|Xt, zs)

q(Xt−1|Xt, X0)
· q(X

t−1|X0)

Xt|X0
+ log

p(X0|X1, zs)

q(X1|X0)
]dX0:T dzs

=

∫
qdata(X

0)q(X1:T |X0)[log
p(XT)

q(XT |X0)

+

T∑
t=2

log
pθ(X

t−1|Xt, zs)

q(Xt−1|Xt, X0)
+ logpθ(X

0|X1, zs) + logp(zs)]dX
0:T dzs

=

∫
q(X0:T)[log

p(XT)

q(XT |X0)
+

T∑
t=2

log
pθ(X

t−1|Xt, zs)

q(Xt−1|Xt, X0)

+ logpθ(X
0|X1, zs) + logp(zs)]dX

0:T dzs

On the right hand side, all the terms except logpθ(X
0|X1, zs) can be rewritten

into the form of the KL divergence. We show how to do it on one of the terms.

A Diffusion-ReFinement Model for Sketch-to-Point Modeling 3

For the rest of the terms, it is similar.∫
q(X0:T)log

pθ(X
t−1|Xt, zs)

q(Xt−1|Xt, X0)
dX0:T dzs

=

∫
q(X0, Xt−1, Xt)log

pθ(X
t−1|Xt, zs)

q(Xt−1|Xt, X0)
dX0,t−1,tdzs

=

∫
q(Xt−1|X0, Xt)q(X0, Xt)log

pθ(X
t−1|Xt, zs)

q(Xt−1|Xt, X0)
dX0,t−1,tdzs

= −
∫

q(X0, Xt)DKL(q(X
t−1|Xt, X0)||pθ(Xt−1|Xt, zs))dX

0,tdzs

= −EX0,Xt,zs [DKL(q(X
t−1|Xt, X0)||pθ(Xt−1|Xt, zs))]

Next, notice that log p(XT)
q(XT |X0)

has no trainable parameters, so we can ignore

it in the training objective. Finally, by negating the variational bound and de-
composing the distribution, we obtain the training objective in Equation (4) as
follows:

L(θ) = Eq[

T∑
t=2

N∑
i=1

DKL(q(x
t−1
i |xt

i, x
0
i)||pθ(xt−1

i |xt
i, zs))︸ ︷︷ ︸

Lt−1
i

−
N∑
i=1

logpθ(x
0
i |x1

i , zs)︸ ︷︷ ︸
L0

i

] .

The training objective can be optimized efficiently since each of the terms
on the right hand side is tractable and q is easy to sample from the forward
diffusion process. Next, we elaborate on the terms to reveal how to compute the
objective. Lt−1

i : q(xt−1
i |xt

i, x
0
i) can be computed with the following closed-form

Gaussian according to [3]:

q(xt−1
i |xt

i, x
0
i) = N (xt−1

i |µt(x
t, x0), σ2

t I) ,

where, using the notation αt = 1− βt, and αt =
∏t

i=1 αi:

µt(x
t, x0) =

√
αt−1βt

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt ,

σ2
t =

1− αt−1

1− αt
βt .

Lt−1
i : pθ(x

t−1
i |xt

i, zs)(t = 1, ..., T) are trainable Gaussians as described in
main paper Equation (3). We further analyse Lt−1

i . Since both q(xt−1
i |xt

i, x
0
i)

and pθ(x
t−1
i |xt

i, zs) are Gaussians, the term Lt−1
i can be expanded as:

Lt−1
i = Ex0

i ,x
t
i,zs

[
1

2βt
∥
√
αt−1βt

1− αt
x0
i +

√
αt(1− αt−1)

1− αt
xt
i − µθ(x

t
i, t, zs)∥2] + C .

Evaluating Lt−1
i requires sampling xt

i from q(xt)|x0. In principle, it can be
done by sampling iteratively through the Markov chain. However, [3] showed

4 D. Kong et al.

q(xt)|x0 is a Gaussian, thus allowing us to sample xt
i efficiently without iterative

sampling:
q(xt|x0) = N (xt;

√
αtx

0, (1− αt)I) .

Using the Gaussian above, we can parameterize xt
i as xt

i(x
0
i , ϵ) =

√
αtx

0
i +√

1− αtϵ, where ϵ ∼ N (0, I):

Lt−1
i = Ex0

i ,ϵ,zs
[
1

2βt
∥ 1
√
αt

(xt
i −

βt√
1− αt

ϵ)− µθ(x
t
i, t, zs)∥2] + C .

The above equation reveals that µθ(x
t
i, t) must predict 1√

αt
(xt

i −
βt√
1−αt

ϵ)

given xt
i. Thus, µθ(x

t
i, t) can be parameterized as:

µθ(x
t
i, t) =

1
√
αt

(xt
i −

βt√
1− αt

ϵθ(x
t
i, t, zs)) ,

where ϵθ(x
t
i, t, zs) is a function approximator (i.e., neural network) intended

to predict ϵ from xt
i. Finally, L

t−1
i can be simplified as:

Lt−1
i = Ex0

i ,ϵ,zs
[

β2
t

2βtαt(1− αt)
∥ϵ− ϵθ(

√
αtx

0
i +

√
1− αtϵ, t, zs)∥2] + C .

To minimize Lt−1
i , we can only minimize E[∥ϵ− ϵθ∥2] because the coefficient

β2
t

2βtαt(1−αt)
is an invariant constant.

2 Implementation Details

In this work, we focus on sketch to point cloud reconstruction, which is a con-
ditional reconstruction problem, because the Markov chain considered in our
work generates points of a point cloud conditioned on some shape latent ex-
tracted from sketches. This conditional adaptation leads to significantly different
training and sampling schemes compared to prior research on diffusion proba-
bilistic models. And to better achieve cross-modal generation, we applied special
designed training strategy.

Diffusion Process According to [3], there is a closed form expression for
q(xt|x0). We use the notation αt = 1 − βt, and αt =

∏t
i=1 αi. Then, we have

q(xt|x0) = N (xt;
√
αtx

0, (1− αt)I). Therefore, when T is large enough, αt goes
to 0, and q(xT |x0) becomes close to the ultimate distribution qultimate(x

T). Note
that xt can be directly sampled through the following equation:

xt =
√
αtx

0 +
√
1− αtϵ, where ϵ is a standard Gaussian noise .

We emphasize that q(xt|xt−1)can be seen as a one-to-one pointwise mapping as
xt can be sampled through the equation xt =

√
1− βtx

t−1+βtϵ. Therefore, the
order of points in x0 is preserved in the diffusion process. However, it does not

A Diffusion-ReFinement Model for Sketch-to-Point Modeling 5

matter what kind of order we input the points in x0. That is because when T
is large enough, xT will become a standard Gaussian distribution. And we are
able to use the simple mean squared error because DPM naturally defines a one-
to-one pointwise mapping between two consecutive point clouds in the diffusion
process as shown in main paper Equation (1). Note that at each training step,
we not only need to sample a point clouds xi, but also a diffusion step t and a
Gaussian noise ϵ.

Reverse Diffusion Kernel The reverse diffusion kernel in Equation (2) is
parameterized by ϵθ(x

t
i, t, zs), as derived in Supplementary Section 1. The kernel

takes the noisy point cloud xt as input. We also add the diffusion step t, the
shape feature zs extracted from sketch to the denoising kernel. We implement it
using a variant of PVCNN [4], which consists of a series of ConcatSquashConv1d
layers [2] defined as:

hl+1 = CSC(hl, t, zs) = (W1h
l + b1)⊙ σ(W2c+ b2) +W3c .

where hl is the input to the layer and hl+1 is the output. The input to the first
layer is the 3D position of points xt

i. c = [βt, sin(βt), cos(βt), zs] is the context
embedding vector, and σ denotes the sigmoid function. W1,W2,W3, b1 and b2
are all trainable parameters.

ReFinement Network Although with the usage of the discriminator, the over-
fitting issue may happen when the discriminator only looks at clean samples, the
diffusion process smoothens the data distribution [5], making the discriminator
less likely to overfit. We visually and intuitively show the effectiveness of our
discriminator design in main paper Section 4.

Convolutional and Attentional Block Our convolutional block consists of 2
convolutional layers. The convolutional block maps the coordinates of input point
cloud to higher dimensions and propagates the sketch features along with the
attentional block. And our attentional block is shown in Fig. 3 (b). It consists
of 2 multi-head attention layers. The first attention layer performs attention
between the output of the sketch-latent-shape encoder and the ground truth
3D point cloud, while the second performs self-attention. Sinusoidal positional
encodings are added to the queries and keys at every attentional layer. For
attentional layers at higher point cloud resolutions, the positions of the sketch
shape latent are multiplied before the positional encoding to allow for easier
alignment between the sketch latent and the distribution of the points in point
cloud.

Experimental Details Both diffusion and reverse sampling processes have
length equal to T. Using 1 NVIDIA V100 GPU, we set step iterations T to 200
in this paper. It takes an average of 0.45 seconds to generate a point cloud. Intu-
itively speaking, the reverse diffusion process is analogous to MCMC (Langevin

6 D. Kong et al.

dynamics) sampling procedures where βt is the step size of the (T − t + 1)-th
step from Equation (3). Since we normalize point clouds to unit variance and
the coordinates of points roughly range from -2 to 2, we set the initial step size

βT to 0.05, slightly larger than 2−(−2)
T = 4

200 , in order to ensure that the points
can walk through possible regions of different shapes in early steps. To make the
points concentrate in desired regions, βT , ..., β1 should be decaying and the last
“step size” β1 should be sufficiently small, so we set β1 to 0.0001.

Dataset Details The ShapeNet-Synthetic dataset contains object renderings of
13 categories from ShapeNet [1]. Images of each object are rendered in 224x224
resolution. Following [8], we extract the edge map of each rendered image us-
ing canny edge detector, which dose not require 3D ground truth comparing
to extracting contours from 3D shapes. We directly use the edge maps as syn-
thetic sketches, and use this dataset to pretrain the model, under the same
train/test/validation sets as the ratio 80%, 15%, 5% mentioned in main paper.

Regarding the number of points we use, for each shape in ShapeNetCorev2,
we use farthest point sampling algorithm to uniformly sample 642 points from
shape surface. All points are then centered and scaled. As shown in Figure 4,
we believe the 642 points have preserved a good overall details and geometries
of the objects. Compared with GAN, diffusion model is a conductive iterative
generation process that takes more time and computational resources. To make
this work more adaptable, we balanced the quality of the generation with the
time required, and eventually chose 642 points per point cloud. And the way we
sample 642 points from the generated meshes follows the processing approach of
[9], which renders the object into points from a set of views and combines the
renderings.

Each quadruplet in ShapeNet-Amateur dataset comprises one 3D shape and
three free-hand sketches drawn from three azimuthal angles respectively. And
we only used one of the three sketches with an azimuth of 45 degrees.

3 Additional Results

We show some additional results on ShapeNet-Amateur dataset in Fig. 1 and 2.
And we also compare with OccNet [6] to display that our results are more sketch-
aligned, shown in Fig. 3 and 4. In addition, Table 1 shows more comparison
results with the latest methods.

Table 1. Comparison with two other baseline methods.

Category
AmaChair AmaLamp AmaMean SynAirplane SynCar SynChair SynLamp SynMean
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Sketch2Model [8] 3.371 13.84 5.928 17.03 4.650 15.44 1.499 7.04 2.375 10.42 2.948 11.30 5.472 16.62 3.074 11.35
SRFHS [7] 2.850 12.88 6.273 17.82 4.562 15.35 1.561 6.87 2.367 16.69 2.634 12.56 6.033 16.25 3.149 13.09

Ours 3.250 10.19 6.152 16.33 4.701 13.26 1.448 6.39 2.291 7.26 2.865 9.67 5.564 15.92 3.042 9.81

A Diffusion-ReFinement Model for Sketch-to-Point Modeling 7

References

1. Chang, A.X., Funkhouser, T.A., Guibas, L.J., Hanrahan, P., Huang, Q., Li,
Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.:
Shapenet: An information-rich 3d model repository. CoRR abs/1512.03012
(2015), http://arxiv.org/abs/1512.03012

2. Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367 (2018)

3. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems 33, 6840–6851 (2020)

4. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel cnn for efficient 3d deep learning.
Advances in Neural Information Processing Systems 32 (2019)

5. Lyu, S.: Interpretation and generalization of score matching. arXiv preprint
arXiv:1205.2629 (2012)

6. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4460–
4470 (2019)

7. Wang, J., Lin, J., Yu, Q., Liu, R., Chen, Y., Yu, S.X.: 3d shape reconstruction from
free-hand sketches. arXiv preprint arXiv:2006.09694 (2020)

8. Zhang, S.H., Guo, Y.C., Gu, Q.W.: Sketch2model: View-aware 3d modeling from
single free-hand sketches. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 6012–6021 (2021)

9. Zhong, Y., Gryaditskaya, Y., Zhang, H., Song, Y.Z.: Deep sketch-based modeling:
Tips and tricks. In: 2020 International Conference on 3D Vision (3DV). pp. 543–552.
IEEE (2020)

8 D. Kong et al.

Fig. 1. Additional example results on ShapeNet-Amateur dataset.

A Diffusion-ReFinement Model for Sketch-to-Point Modeling 9

Fig. 2. Additional example results on ShapeNet-Amateur dataset.

10 D. Kong et al.

Fig. 3. Additional comparison results on ShapeNet-Amateur dataset.

A Diffusion-ReFinement Model for Sketch-to-Point Modeling 11

Fig. 4. Additional comparison results on ShapeNet-Amateur dataset.

