
NoiseTransfer: Image Noise Generation with
Contrastive Embeddings

Seunghwan Lee and Tae Hyun Kim

Dept. of Computer Science, Hanyang University, Seoul, Korea
{seunghwanlee,taehyunkim}@hanyang.ac.kr

1 Network Configurations

1.1 Generator

Fig. 1 shows the architecture of our U-Net based generator. We adopt the spatial
feature transform (SFT) layer [6] to efficiently translate features based on the
noise embeddings. Moreover, we add randomness in β by introducing Gaussian
random noise z to generate differently realized noise for each forward. We set the
number of feature channels as 64, and we double the number of feature channels
at each down-convolution. LeakyRelu function is used for activation between
convolution layers.

1.2 Discriminator

Fig. 2 shows the architecture of our discriminator. Particularly, our discriminator
has three levels of output with different receptive fields to benefit from various
levels of contextual information from noisy image. For outputsDgan(·),mnoise(·),
and mgan(·), the final outputs consist of the set of three levels of each output
(e.g., Dgan(·) = {Dgan1(·), Dgan2(·), and Dgan3(·)}), and loss is computed for
each set. We adopt additional a two-layer multi-layer perceptron (MLP) to pro-
duce Dnoise(·) from the set of {Dnoise1(·), Dnoise2(·), and Dnoise3(·)}, and ensure
bounded values of noise embeddings by applying hyperbolic tangent function.
Instance normalization [5] is utilized in the discriminator, however we derive the
scaling and shifting parameters from the noise embeddings for Dgan. Spectral
normalization [4] is used for stable training for both generator and discriminator,
and LeakyRelu function is used for activation.

2 Limitation

We analyze the limitation of our model. In fact, we do not guarantee that our
model generates completely different types of noise that are not included in the
training set. We try to transfer and synthesize the unseen noise type during
training, salt and pepper noise for example, as shown in Fig. 3. Our model fails
to generate a new noisy image with salt and pepper noise due to the mismatch
of noise distributions of the training and inference, which is a common problem
widely existing in data-driven deep learning methods.
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Fig. 1: Architecture of our U-Net based generator. The noise embeddings are
expanded to match the shape of input feature maps in SFT layer [6]. Gaussian
random noise z is concatenated with the noise embeddings for β to generate
spatially random noise.

3 Visual Results

We provide more experimental results qualitatively. Fig. 4 and Fig. 5 show ex-
amples of synthetic noise generation for variable noise levels as stated in the
manuscript (Sec. 4.1). Visual comparisons for the real-world noise generation
are presented from Fig. 6 to Fig. 8. Fig. 9 and Fig. 10 show visual denoising
results on the BSDS500 corrupted synthetically and on the SIDD validation set
respectively.
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Fig. 2: Architecture of our discriminator. The discriminator has three levels of
output with different receptive fields, and convolution weights in residual blocks
are shared for Dnoise and Dgan. The scaling and shifting parameters for instance
normalization inDgan are specially obtained from the noise embeddings, denoted
by γgan and βgan respectively. The noise embeddings are produced with the set
of {Dnoise1, Dnoise2, and Dnoise3} followed by MLP projection.
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Fig. 3: Failure case of noise generation on the unseen noise type during training.
The clean image is corrupted by salt and pepper noise. Left to Right: Clean,
Noisy, Generated noisy image by our NoiseTransfer.
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Fig. 4: Examples of synthetic noise generation. Gaussian (first three rows), Pois-
son (middle three rows), and Poisson-Gaussian noise (last three rows). Left to
Right for each instance: Ground-truth noisy image, Generated noisy image
by our NoiseTransfer, Ground-truth noise, Generated noise by NoiseTransfer
(Ours).
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Fig. 5: Examples of synthetic noise generation. Gaussian (first three rows), Pois-
son (middle three rows), and Poisson-Gaussian noise (last three rows). Left to
Right for each instance: Ground-truth noisy image, Generated noisy image
by our NoiseTransfer, Ground-truth noise, Generated noise by NoiseTransfer
(Ours).
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Fig. 6: Visual results of noise generation on the SIDD validation set. The cor-
responding noise is displayed below for each noisy image. Left to Right: CA-
NoiseGAN [2], DANet [7], GDANet [7], NoiseGAN [1], C2N [3], NoiseTransfer
(Ours), Noisy, Clean.
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Fig. 7: Visual results of noise generation on the SIDD validation set. The cor-
responding noise is displayed below for each noisy image. Left to Right: CA-
NoiseGAN [2], DANet [7], GDANet [7], NoiseGAN [1], C2N [3], NoiseTransfer
(Ours), Noisy, Clean.
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Fig. 8: Visual results of noise generation on the SIDD validation set. The cor-
responding noise is displayed below for each noisy image. Left to Right: CA-
NoiseGAN [2], DANet [7], GDANet [7], NoiseGAN [1], C2N [3], NoiseTransfer
(Ours), Noisy, Clean.
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Fig. 9: Visual results for synthetic noise removal on the BSDS500. Gaussian
(first three rows), Poisson (middle three rows), and Poisson-Gaussian noise (last
three rows). Left to Right for each instance: RIDNet results trained by
NoiseTransfer (Ours), and Noisy and Clean image.
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Fig. 10: Visual results for real noise removal on the SIDD validation set. Left to
Right: RIDNet results trained by DANet [7], GDANet [7], C2N [3], CycleISP [8],
and NoiseTransfer (Ours), and Noisy and Clean image.


