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1 Selection of the CNN Backbone

We test two series of architectures based on ResNet and ViT with different set-
tings. As Table 1 shows, we determine that deeper structure results in worse
system performance, and partially fine-tuned backbones usually work better
than fully fine-tuned ones. For example, the fully fine-tuned ResNet-18full out-
performs its corresponding deeper versions ResNet-50full and ResNet-101full,
while the partially fine-tuned ResNet-50partial shows a significant improvement
over its fully fine-tuned one ResNet-50full. The same conclusion can be drawn
by analyzing the ViT results. Also, we incorporate an attention-based IQA ar-
chitecture PHIQNet as the feature extractor to our model. Table 2 shows the
performance comparisons of two models (with different backbones). As seen, the
partially fine-tuned ResNet-50 and PHIQNet contribute similarly to our task.
For a fair comparison with previous work, as well as the tradeoff between model
complexity and performance, we select the partially fine-tuned ResNet-50 as the
CNN backbone to construct our DCVQE model.

Table 1. Performance comparisons of two series of architectures based on ResNet
and ViT with full and partial fine-tuning strategies on KoNViD-1K dataset. Here
ViT-B16/32 represents ViT base model with 16*16/32*32 input patch size, ViT-L32
represents ViT large model with 32*32 input patch size.

Models SRCC PLCC KRCC RMSE

ResNet-18full 0.8893 0.8798 0.6955 0.2466
ResNet-18partial 0.8888 0.8813 0.6979 0.2494
ResNet-50full 0.8507 0.8407 0.6457 0.2889
ResNet-50partial 0.9058 0.8933 0.7168 0.2308
ResNet-101full 0.8511 0.8317 0.6365 0.2847
ResNet-101partial 0.9075 0.8962 0.7166 0.2278
ViT-B16full 0.8620 0.8818 0.6759 0.3570
ViT-B16partial 0.7786 0.8103 0.5849 0.3587
ViT-B32full 0.7716 0.8066 0.5788 0.3405
ViT-B32partial 0.7639 0.8038 0.5707 0.3878
ViT-L32full 0.7881 0.8131 0.5905 0.3267
ViT-L32partial 0.8406 0.8708 0.6516 0.2786
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Table 2. Performance comparisons of two models with ResNet-50 and PHIQNet fea-
ture extraction backbones. The tests are conducted on KoNViD-1K dataset.

Models SRCC PLCC RMSE

ResNet-50partial + DCVQE 0.8382 0.8375 0.3515
PHIQNet + DCVQE 0.8376 0.8313 0.3599

2 Optimal Number of DCTr Layers

We conduct the ablation study on KoNViD-1K dataset to find out the optimal
number of DCTr layers to construct our DCVQE model. As listed in Table 3,
only one DCTr layer does not adequately solve the VQA problem, while stacking
3 DCTr layers significantly increases the performance. Further increases in layers
do not improve performance. As a result, we set 3 as the optimal number of DCTr
layers for our model.

Table 3. Performance comparisons of the different numbers of DCTr layers.

Layer # SRCC PLCC RMSE

1 0.7954 0.8013 0.3688
3 0.8382 0.8375 0.3515
5 0.8346 0.8305 0.3592
7 0.8350 0.8332 0.3527

3 More Studies on the Proposed Correlation Loss

To find out how the proposed correlation loss additionally helps to improve
NR-VQA, we apply the proposed losses to train the baseline Transformer and
DCVQE models, respectively. The well-known pairwise ranking loss (PW-RL)
is also involved in our study. Learned from subsection 4.4 of the paper, the
best performance can be achieved with a temporal range selected from 9 to
15, so we only conduct the experiments under 3 different range settings of 9,
12, and 15. The test results are shown in Fig. 1, where we can see that no
matter which architecture and temporal range are selected, the introduction of
our correlation loss can consistently help to improve VQA performance. The PW-
RL is also comparably well to optimize our DCVQE model. However, its solution
reaches the highest RMSE. The reason is that the PW-RL will be converted to
cross-entropy loss for training so that the optimization strength might be too
strong for pairs with wrong ranking orders but small Mean Opinion Score (MOS)
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Fig. 1. Performance comparisons among ‘with correlation loss’ (w CL), ‘without cor-
relation loss’ (w/o CL), and ‘with pairwise ranking loss’ (w PW-RL) under different
models and settings on KoNViD-1K dataset.

differences. Fortunately, our correlation loss can better handle this situation
because both ranking orders and MOS differences are considered.

Additionally, to show how the proposed correlation loss and architecture ben-
efit real VQA tasks, we provide MOS prediction results of 4 KoNViD-1k sample
videos in Table 4. From this table, we can see that (1) DCVQEcl maintains the
order relation among the samples but DCVQEl1 and Vanilla-Transformer fail,
and (2) both the Mean Absolute Errors (MAEs) of DCVQEcl and DCVQEl1 are
lower than that of Vanilla-Transformer thanks to the new hierarchical architec-
ture of DCVQE.

Table 4. MOS prediction results of 4 KoNViD-1k samples: DCVQEcl is trained with
proposed loss (Eq. 5 of the paper); DCVQEl1 is trained with L1 loss.

Video Id Ground Truth DCVQEcl DCVQEl1 Vanilla-Transformer

5319047612 1.35 1.95 2.00 1.99
4265470174 1.56 1.96 1.96 1.97
3521396571 3.54 3.56 3.58 3.72
12893008605 3.55 3.58 3.55 3.68

MAE - 0.26 0.27 0.34
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4 Computational Cost Analysis

Compared with the Vanilla-Transformer, our DCVQE model has a lower com-
putational cost. For example, to calculate the attention weights for one single
frame, the time complexity of the Vanilla-Transformer is O(DN), while that of
our DCVQE is O(D ∗ N

C ) because an input video will be split into a number of
clips for processing (where D denotes the dimension of feature, N is the total
frame size and C is the clip number).


