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In this supplementary material, we first discuss the ethical and societal impacts
of our work (Section 1). Next, we cover more details of the proposed FunnyNet
implementation, evaluation and analysis (Section 2) and then we give more de-
tails for our proposed unsupervised laughter detection pipeline (Section 3). Fi-
nally, we analyse the several video materials that accompany this submission
(Section 4).

1 Ethical and Societal Discussion

Practical Impact. There are various potential applications for FunnyNet. First, it
may be useful to collect a large dataset of funny moments, so that, for example,
cognitive researchers could study funniness mechanisms at large scale. Next, it
may be useful to enable artists to edit films more easily, without relying on live
audience. Finally, it may be useful to enhance human-machine interactions. For
instance, adding a sense of humour to conversational agents would make the
relation more natural and spontaneous.

However, FunnyNet is part of artificial intelligence systems that tend to anal-
yse complex human specificities and behaviors (e.g., conversational agents). And,
as all these kinds of systems, we should be careful to their uses. For instance,
in the particular case of FunnyNet, it could enhance identity fraud methods, by
better mimicking the sense of humor of victims.

Societal Impact. FunnyNet is trained mainly with Western cultural materials,
especially from the USA, which do not necessarily represent uniform demograph-
ics. In particular, we mainly tackle funniness in American sitcoms, which covers
a very specific type of humour. Therefore, without fine-tuning, FunnyNet might
have difficulties to generalize to funny moments from other cultures, as humour
is highly thematic, and themes vary from a culture to another. Moreover, the
audio modality might also be highly impacted by cultural bias, as expressive-
ness is strongly related to culture, e.g., actor performances change a lot from
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a country to another, leading to misinterpretations. In addition to the cultural
barrier, FunnyNet includes language bias. Indeed, the audio as well as the tex-
tual modality - even though FunnyNet does not rely on subtitles -, are trained
with the English language. This can be a limiting factor for generalization and
transferability across languages, as jokes or puns often rely on language speci-
ficities.

We also note that the textual modality is also limited by alphabets that vary
among languages.

Environmental Impact. All experiments are done on two NVIDIA RTX2080
GPUs, with each of them requiring 215W in power supply. For this project, we
use approximately 800 GPU hours. Training a FunnyNet model with all three
modalities requires around 6 GPUs hours, which amounts to 1.29 kWh and
300.75g of CO2 emitted.

2 FunnyNet

2.1 Implementation and Evaluation Details

Implementation Details. The input audio is first downsampled by fixed sampling
frequency (16000 Hz) then transformed to log-scaled Mel spectrogram by mel-
spaced frequency bins F = 64. We train FunnyNet using Adam optimizer with
a learning rate of 10−4 and a batch size of 32 using Pytorch [6]. At training,
we use data augmentation both for visual and audio data. For the frames, we
randomly apply rotation and horizontal/vertical flipping, and we randomly set
the frame sampling rate to select the 8 frames for training. For the audios, we
apply random forward and backward time shifts and random Gaussian noises.
For subtitles, we tokenize them as max length = 64 inputs and send to the
BERT model.

Datasets. Friends [7,8] contains all 25 episodes (∼23 minutes) from the third
season of Friends (∼10 hours). We split the dataset in 15 training (1-15), 5
validation (16-20) and 5 test episodes (21-25). Each episode comes with video,
audio, face, body, voice tracks and features with speaker identifiers. As men-
tioned in Section 4 in the main manuscript, we enrich this dataset by providing
manually annotated laughter time-codes. These annotated time-codes consist of
time-stamps of the start and the end of all canned or not laughter. This pro-
cess results in 3.5k time-codes, with an average duration 3 sec (0.3-16.5 sec),
138 average number of laughter per episode (109 to 182). We will make these
annotations available online upon acceptance.
Manual and Automatic Labels. For fair evaluation, at training we use the
automatically detected laughter (Section 3.3 in the main paper) extracted by
our proposed laughter detector, whereas at test time we experiment with both
manual and automatic laughter. The comparison is shown in Table 2, where we
report as ‘Manual Labelling’ the results on the test manually-labelled test set,
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Table 1: Comparison to the state of the art on five datasets for all metrics. For all
methods we indicate the modalities used A: audio, V: visual frames, F: Face, T: text.
† Reproduced results: we use the exact model as in [1] (see Section 2.2)

Method / Metrics
TBBT MHD

Pre Rec F1 Acc Pre Rec F1 Acc

Random 43.1 49.9 46.3 50.0 61.4 51.7 56.1 50.9
All positive 43.2 100.0 60.3 43.2 60.8 100.0 75.6 60.8
All negative 0.0 0.0 0.0 56.8 0.0 0.0 0.0 39.2
MUStARD 2019 (V+T+A) [2] - - - - - - - -
MSAM 2021 (V+T) [3] - - - - - - 81.3 72.4
MISA 2020 (V+A+T) [4] - - - - - - - -
HKT [5] - - - - - - - -

LaughM† 2021 (T) [1] 67.4 61.3 64.2 70.5 77.8 97.3 86.5 76.3
FunnyNet: V+F+A 70.3 68.8 69.6 74.0 84.7 83.2 84.0 79.3

FunnyNet: V+A+T 69.3 79.0 73.8 75.8 78.9 88.3 83.4 78.6
FunnyNet: V+F+T 76.7 75.4 76.0 69.5 69.8 83.2 75.9 69.8
FunnyNet: V+F+A+T 73.0 79.1 75.9 78.3 83.4 87.2 85.2 79.6

Method / Metrics
MUStARD UR-FUNNY Friends

Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc

Random 48.7 47.8 48.3 48.7 50.1 50.2 50.2 50.2 51.0 51.0 51.0 51.0
All positive 50.0 100.0 66.7 50.0 50.7 100.0 75.4 50.7 50.0 100.0 66.7 50.0
All negative 0.0 0.0 0.0 50.0 0.0 0.0 0.0 49.3 0.0 0.0 0.0 50.0
MUStARD 2019 (V+T+A) [2] - - 71.7 71.8 - - - - - - - -
MSAM 2021 (V+T) [3] - - - - - - - - - - - -
MISA 2020 (V+A+T) [4] - - - 62.2 - - - 69.8 - - - -
HKT [5] - - - 79.4 - - - 77.4 - - - -

LaughM† 2021 (T) [1] 69.0 68.7 68.6 68.7 62.8 84.1 71.9 67.6 59.9 99.1 74.7 59.8
FunnyNet: V+F+A 79.7 83.2 81.4 81.0 90.1 78.1 83.7 78.0 85.8 91.9 86.8 84.8

FunnyNet: V+A+T 81.0 78.0 79.5 79.9 89.1 79.6 84.1 79.9 85.2 91.4 88.2 85.8
FunnyNet: V+F+T 76.2 74.2 75.2 76.3 84.3 80.4 82.3 73.0 81.7 80.9 81.3 76.2
FunnyNet: V+F+A+T 78.3 88.7 83.2 82.0 86.1 82.8 84.4 80.2 84.6 93.4 88.8 86.4

and as ‘Automatic Labelling’ the results on the test set where the labels come
from our Unsupervised laughter detector.

Table 2 shows that FunnyNet performs similarly on the ‘Manual’ and ‘Auto-
matic’ labelling cases. This indicates that the laughter detected by our proposed
automatic labelling model matches with human labelling level. Specifically, some
results with automatic labels are higher than the manual ones, as they are not
perfect, and probably some difficult cases are not detected; yet, overall, both re-
sults are comparable, showing that our laughter detector is sufficiently accurate.

2.2 Comparison to the State of the Art

Table 1 in the main manuscript reports the comparison to the state of the art
on all five datasets. Table 1 here, reports the same comparison by including two
additional metrics: Precision (Pre) and Recall (Rec). Note that most methods
do not provide full metrics but only F1 score or accuracy, so there are some
missing results. We report precision and recall to let the readers know that the



4 Liu et al.

Table 2: Ablation study of FunnyNet on Friends. We experiment on both the manu-
ally (a) and the automatically (b) labelled test sets. We report Precision (Pre), Recall
(Rec), F1 score (F1) and Accuracy (Acc) for audio (A), visual (V) and face (F) modal-
ities

Modalities Metrics
A V F Pre Rec F1 Acc

✓ - - 71.16 75.09 73.71 66.73
- ✓ - 72.57 73.23 72.93 63.44
- - ✓ 72.58 73.22 72.94 62.13

✓ ✓ - 80.86 87.81 84.19 81.14
✓ - ✓ 81.13 86.89 83.91 82.22
✓ ✓ ✓ 85.09 88.56 86.79 84.75

(a) Manual labelling

Modalities Metrics
A V F Pre Rec F1 Acc

✓ - - 70.23 75.87 72.94 67.80
- ✓ - 73.08 74.49 73.77 65.01
- - ✓ 74.21 74.09 74.15 64.23

✓ ✓ - 81.11 88.20 84.51 82.19
✓ - ✓ 81.67 87.39 84.43 82.28
✓ ✓ ✓ 86.30 89.44 87.84 85.34

(b) Automatic labelling

improvement of using multiple modalities is consistent with the results of F1
score and accuracy.

As described in Section 5.1 in the main manuscript, performances of Fun-
nyNet are noticeably better than of all other methods across the five datasets.
We note that LaughM leads to higher recalls, e.g. by 14.1-6% on MHD and UR-
FUNNY, which results in a higher F1 score only on MHD by 2.5%. However,
these high recall values are accompanied by lower precisions in comparison to
FunnyNet, e.g. by 27.3-25.9% on UR-FUNNY and Friends, showing that sev-
eral predictions of LaughM are false positives. Moreover, we observe that adding
the textual modality to FunnyNet improves the recall, while keeping the same
precision, e.g. by 10.3-5.5% on MHD and MUStARD for FunnyNet V+F+A+T.

LaughM [1] (T) Results. LaughM [1] reports results on TBBT. For the MHD,
MUStARD, UR-FUNNY and Friends datasets, we run the LaughM model and
produce their results using the Punch model (only text), as it is the one that
performs the best in their paper.

LaughM (T) [1] is trained and tested on TBBT. The protocol of LaughM
consists in predicting a humour label for each consecutive subtitle of an episode.
Specifically, LaughM models a sequence by processesing five subtitles at the
same time (the one from the current timestamp and the four previous ones)
using LSTM cells.

In our case, we first pre-train LaughM first on Friends using their protocol
and then fine-tune on the other datasets. For testing, we apply the pre-trained or
fine-tuned model over all subtitles to exploit the context information (processed
by the LSTM). For a fair comparison to FunnyNet, we keep only the prediction
of the last subtitle in the 8-sec window, so that we evaluate both the LaughM
and FunnyNet models on the exact same test set.
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Table 3: to the state of the art of FLOPs count (FLOPs), number of parameters
(Params) and inference runtime average (Runtime)

Model FLOPs (109) Params (106) Runtime (ms)

MISA 2020 (V+A+T) [4] 138.8 111.2 33.64
HKT 2021 (V+A+T) [5] 7.6 16.8 25.91
LaughM 2021 (T) [1] 2.5 112.4 11.15

FunnyNet (V+F+A) 190.9 126.9 45.25

For Friends, we use as positive subtitles the ones in the 8-sec window pro-
ceeding the laughter and negative all other (similar to Friends).

Then, we fine-tune the model on each dataset at hand and test it on the test
set of each of them. For MHD, as we do not have training data, we fine-tune
the model with 32 episodes from TBBT (disjoint set from MHD). In contrast to
TBBT where subtitles from one episode are fed consecutively, here, we consider
each sample as an independent one: the LSTM operates only on one sequence
of subtitles (with five dialogue turns per sample). Similar to Friends, in order
to have the exact same test set as with FunnyNet, we run the model over all
subtitles, but we only keep the prediction on the last dialogue in the sample.

For MUStARD and UR-Funny, we fine-tune LaughM on the whole datasets.
Note, we only report results for the punchline, as it leads to better performances.
For these datasets, there is no context: each sample corresponds to one subtitle.
For fair comparison, for MUStARD, we evaluate the model over the 5-folds pro-
vided by the authors of [2]. We also compare in Table 3 FunnyNet’s complexity
to the other state-of-the-art models. We note that the gain in performances and
the unsupervised aspect aspect of FunnyNet impact its complexity. Indeed, Fun-
nyNet is a huge model, with an increase of ∼ 52 GFLOPS, ∼ 16M of parameters
and ∼ 11ms on runtime, in comparison to the second heaviest model [4].

2.3 Additional Ablations

Influence of Time Window Settings Time Window Length. Our pro-
posed FunnyNet is trained on 8-second inputs of multiple modalities. This setting
is based on the pre-trained Timesformer [9]. Since it processes video sequences of
fixed length, we follow the same strategy to process the video frames. In order to
test the effect that the length of time window has on FunnyNet, we perform here
an ablation study on using Timesformer for funny prediction; this is equivalent
to FunnyNet: V in our results of Table 3 in the main manuscript.

For this, we use input time windows of varying lengths (from 2 to 16 seconds)
in FunnyNet: V and report the results on four datasets (as well as their average)
in Table 4 and Figure 1 (a). Overall, we observe that using 8 seconds achieves
the best performance compared to all other settings. Using 16 or 32 seconds
input are the two follow-up scenarios, whereas having longer inputs degrades the
performance. This is probably because longer inputs contain too many visual or
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(a) (b)

2 4 8 10 12 14 16
Window length (s) Number of frames

8 16 32 64 96

Evolu*on of the accuracy and F1-score  
according to length of the *me window

Evolu*on of the accuracy and F1-score  
according to number of frames in the *me window
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66

65

64

63

62

61

60

Fig. 1: FunnyNet performance over (a) varying lengths of time windows and (b) num-
bers of frames averaged across 4 datasets: TBBT, MHD, MUStARD and Friends.
Prediction results when (a) varying the length of input time windows, with same 8
sampled frames, (b) using different numbers of frames within the same 8-second time
window. We display Accuracy (red) and F1-score (blue)
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55
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2 4 8 10 12 14 16 2 4 8 10 12 14 16

Evolution of  accuracy and F1 score using audio 
according to length of the time window

Evolution of  accuracy and F1 score using text 
according to length of the time window

(a) (b)Accuracy F1 score

Fig. 2: FunnyNet performance over (a) varying lengths of time windows on audio
modality and (b) varying lengths of time windows on text modality averaged across 4
datasets: TBBT, MHD, MUStARD and Friends. Prediction results We display Accu-
racy (red) and F1-score (blue)
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Subtitle: 
Ross: Hey!
Chandler: hi!
Ross: I am gonna on TV!
Chandler: No way! 
Ross: Yeah!00:01:5200:01:48

Punchline: 
Ross: They are put together this panel to talk 
about fossils they just found in Peru and the 
discovery channel is gonna film it. 
Chandler: On my god! who’s gonna watch that?

a.

b. 00:11:1200:11:08

00:11:1600:11:08

Subtitle: 
Rachel: Look, either help me or go.
Ross: Fine, I’ll go.
Rachel: But before you go, could you help me first?
Ross: Sure, I’ll help you.

Subtitle: 
Rachel: Look, either help me or go.
Ross: Fine, I’ll go.
Rachel: before you go, could you help me get ready?
Ross: Sure, I’ll help you.
Punchline:
Chandler: Oh, good! Do you know how to get a chick out of a VCR?

00:01:5600:01:48

T 
F

T
F 

T 
F

T
F 

8s

4s

8s

4s

Fig. 3: Ablation study of FunnyNet on time windows smaller than 8 seconds. We
show two examples cropped at different timestamps. The predictions are indicated by
✓

T 
F

T
F 

T
F 

T
F 

8s Chandler makes fun of Joy cuddling the chick

00:06:0400:05:51 00:05:57Funny moment Not-funny moment

Scene transition10s Chandler makes fun of Joy cuddling the chick

Pete asks Monica somethingScene transition12s Chandler makes fun of Joy cuddling the chick

Pete asks Monica somethingScene transition14s Chandler makes fun of Joy cuddling the chick

Fig. 4: Ablation study of FunnyNet on time windows larger than 8 seconds. We
show 4 input examples cropped at different timestamps. Blue color indicates the funny
moment, green color indicates not-funny moment and yellow color is for the scene
transition. The predictions are indicated by ✓
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Table 4: Ablation study of FunnyNet: V on different datasets on time windows.
Prediction results on using different lengths of time windows with same 8 sampled
frames

Time
window

TBBT MHD MUStARD Friends Avg

Metric F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

2s 60.2 60.5 60.5 61.9 68.5 59.9 60.9 56.0 62.5 59.6
4s 60.2 60.7 60.4 62.3 68.4 59.3 66.0 57.8 63.8 60.0
8s 60.6 60.4 60.8 62.0 68.8 60.0 72.9 63.4 65.8 61.8
10s 59.5 58.8 58.8 60.7 68.8 60.7 65.7 62.7 63.2 60.7
12s 58.4 58.6 59.3 60.3 69.3 60.3 66.1 63.1 63.3 60.6
14s 58.5 57.7 58.4 59.8 68.4 59.8 60.8 63.0 61.5 60.1
16s 58.3 57.3 58.4 59.7 68.4 59.7 61.0 61.1 61.5 59.5

Table 5: Ablation study of FunnyNet: A on different datasets on the length of time
window. Prediction results on using different time windows

Time
window TBBT MHD MUStARD Friends Avg

Metric F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
2s 57.1 57.3 56.8 57.8 59.8 58.1 59.1 58.2 58.2 57.9
4s 59.9 59.0 58.1 59.3 63.3 60.0 61.3 59.4 60.6 59.4
8s 67.2 62.3 65.9 60.6 70.0 61.0 73.7 66.7 69.2 62.6
10s 67.2 62.5 65.7 61.0 70.0 61.0 73.6 66.6 69.1 62.8
12s 67.2 62.1 65.6 60.2 70.1 60.8 75.3 66.5 69.6 62.4
14s 67.9 62.3 65.5 60.4 71.5 61.2 73.8 66.3 69.7 62.5
16s 67.8 62.2 65.4 60.4 70.3 59.9 62.4 58.9 66.5 60.3

audio information across both positive and negative samples, which confuses the
model to give correct predictions.

In the meantime, we also test the impact of time windows on audio and text
modalities. As for the vision modality, we evaluate the performances on four
datasets and report the results in Table 5 and Table 6. For audio, we observe
that using a longer time window improves the prediction accuracy. The best
time window setting is around 8s 12s. For any time windows outside this range,
the performance is getting worse. Similarly for text, the best performance is
around 8s. Both audio and text share the same trend, showing that they are
linearly correlated to the time windows. It is also reasonable since audio and
text contains similar cues for scene understanding. The overall evaluation on
audio and text are shown in Figure 2.

To further demonstrate the effect of time window, we visualize in Figure 4
an example from Friends of a video with varying length of time window, i.e., the
same scene in 8-sec, 10-sec, 12-sec, and 14-sec (first to fourth row, respectively).
The 8-sec input showxs that the proposed FunnyNet correctly identifies the scene
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Table 6: Ablation study of FunnyNet: T on different datasets on the length of time
window. Prediction results on using different time windows

Time
window TBBT MHD MUStARD Friends Avg

Metric F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Metric F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
2s 56.6 50.4 56.8 57.8 59.8 58.1 59.0 58.2 58.1 56.1
4s 60.7 58.3 60.0 59.8 66.0 59.9 63.3 59.1 62.5 59.3
8s 68.2 61.6 66.7 59.8 70.2 59.5 70.1 64.3 68.8 61.3
10s 67.8 61.7 66.8 60.2 71.0 59.6 70.2 64.3 69.0 61.4
12s 67.8 61.6 66.7 60.2 71.3 59.6 69.7 64.1 68.9 61.4
14s 67.8 61.7 66.5 60.1 69.8 60.1 69.7 64.0 68.4 61.5
16s 61.9 59.8 60.8 60.0 62.8 59.5 67.3 60.8 63.2 60.0

A. Visualize different features on Friends testing data

(a) Context feature (b) Audio feature (c) Facial feature (d) Joint feature (w/o Attn) (g) Joint feature (w/ CAF)

B. Visualize different features on TBBT testing data

(e) Joint feature (w SA) (f) Joint feature (w CA)

(a) Context feature (b) Audio feature (c) Facial feature (d) Joint feature (w/o Attn) (g) Joint feature (w/ CAF)(e) Joint feature (w SA) (f) Joint feature (w CA)

Fig. 5: t-SNE visualization of feature embeddings on Friends (top) and TBBT (bot-
tom) for (a) visual, (b) audio, (c) face, (d) joint feature (V+A+F) without using any
attention modules, (e) joint feature (V+A+F) using only self attention module (SA),
(f ) joint feature (V+A+F) using only cross attention module (CA), and (g) joint fea-
ture (V+A+F) using CAF module (both CA and SA, i.e., the proposed FunnyNet).
We positive (blue) and negative (negative) samples

as a funny moment (given the smiling faces and their corresponding audio-track).
However, increasing the length of time windows (from 8 to 14 secs) results in a
scene transition and in turn a new scene that in this case is not funny (green
blocks in Figure 4). Therefore, these models miss the funny moment, and instead
wrongly predict the whole sequences as negative. This example shows that the
length of the input window may have a strong impact on the prediction, as it
may cross multiple scenes, and hence give mixed signals to the model (both
funny and not-funny scenes), rendering it incapable of correct predictions.

Similarly, using a shorter time window may not be sufficiently long to capture
the whole funny moment (e.g., miss the punchline). Figure 3 illustrates two such
examples, where we observe that an input window shorter than 8-secs may not
grasp the funny components, like the punchline, hence the model cannot give
correct prediction.
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Table 7: Ablation study of FunnyNet: V on different datasets on number of frames.
Prediction results on using different numbers of frames with same 8-second time window

Data
8s

TBBT MHD MUStARD Friends Avg

Metric F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

8 frames 60.6 60.4 60.8 62.0 68.8 60.0 72.9 63.4 65.8 61.5
16 frames 60.5 60.4 60.8 62.1 68.8 59.9 73.0 63.3 65.8 61.4
32 frames 60.9 60.4 60.7 62.0 68.8 60.0 72.9 63.4 65.7 61.5
64 frames 60.3 60.2 59.8 60.0 68.7 60.0 70.9 62.8 64.9 60.8
96 frames 60.5 60.4 60.4 61.3 68.8 60.1 71.5 63.2 65.3 61.2

Thus, we conclude that the length of the input time window is a trade-off
between too short (that do not always capture the funny-moment) and too long
windows (that may span over multiple scenes). This trade-off typically depends
on the dataset and on the type of funnyness we try to capture (e.g., punchlines
vs black humor). In our experiments, we use 8-sec inputs, since on average, they
perform the best among all alternatives (Table 4, Figure 1 (a)).

Number of Frames per Window. Given the input time window of 8 seconds, we
also test another scenario when sample different number of frames in a fixed
8-second time window. The results are shown in Figure 1 (b) and in Table 7.
We observe that the number of frames does not affect significantly the final
prediction. This is expected, since sampling more frames in a fixed time window
only produce redundancy without introducing new information.

Influence of Modalities

Feature Visualization. In Figure 6 in the main paper, we illustrate the t-SNE
visualization of various feature embeddings. Figure 5 here displays more compar-
isons of different feature maps, with the top row displaying results on Friends and
the bottom on TBBT. We display features both from single and from multiple
modalities. We observe that when using a single modality, we cannot distinguish
the positive from the negative samples ((a) to (c)). When using multiple modal-
ities, FunnyNet learns to generate clearer boundaries for classification ((e) to
(g)). For instance, the positive (dots) and negative (blue dots) are much sep-
arated than with using single modality. This pattern is clearer in the Friends
dataset than in TBBT because TBBT has shorter and more frequent laughter.
The model tends to identify the short clips (≤ 2s) as false positive. This demon-
strates the powerful capabilities of using visual, audio and facial cues for funny
moment prediction.

Cross Attention Fusion (CAF) Module. Figure 5 illustrates the t-SNE embed-
dings with positive and negative samples. (d) illustrates the embedding when



FunnyNet 11

𝐿ୱୱ

CA CA CA

𝐹
𝐹 𝐹 𝐹ி

Audio Video frames

BYOL-A

Projection

Audio encoder

Projection

Visual encoder

Inception
ResNet

LSTM

Projection

Face encoder

TimeSformer

Linear 𝐿ୡ୪ୱ
Cross-Attention 

Fusion
SA

𝐹ௌ

𝐹େ

𝐿ୱୱ

CA CA CA

𝐹
𝐹 𝐹 𝐹ி

Audio Video frames

BYOL-A

Projection

Audio encoder

Projection

Visual encoder

Inception
ResNet

LSTM

Projection

Face encoder

TimeSformer

Linear 𝐿ୡ୪ୱ
Cross-Attention 

Fusion
SA

𝐹ௌ

𝐹େ

BERT

Projection

Text encoder

Chandler: You stay here and 
think about what you did!

Ross: That is a duck. 
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Fig. 6: FunnyNet architecture with Text Encoder. We use BERT to extract text
features to combine with other modalities for prediction

Table 8: Ablation of loss of FunnyNet on Friends when training with and without
the self-supervised contrastive loss Lss

Pre Rec F1 Acc

FunnyNet + Lcls 69.32 74.17 70.88 67.97

FunnyNet + Lcls + Lss 85.09 88.56 86.82 84.75

training without the Cross Attention Fusion (CAF) Module, i.e., no self and
cross attentions, while the last one has the t-SNE embedding when training the
full FunnyNet with proposed CAF module. This qualitative comparison high-
lights the importance of the Attention mechanism for funny moment prediction,
where we observe the significant change in the feature space and the clearly visi-
ble separability of positive from negative samples when using the Cross Attention
Fusion module.

Text Encoder. Our proposed FunnyNet relies on audiovisual data for prediction
without using text (in the form of subtitles) as extra information. As mentioned
in Sections 3 and 6.1 in the main manuscript, for a fair comparison to the state
of the art, we add a text encoder (that uses subtitles) as a fourth modality and
train FunnyNet with a combination of all four modalities. Figure 6 illustrates
this. Our text encoder consists of a pre-trained BERT model [10] followed by
LSTM to extract text features for prediction. The input of the model is sequential
sentences, which are then projected onto a fixed 768-D embedding vector using a
pre-trained BERT. This vector is further processed by a LSTM, forming finally
a 512-D vector FT∈R512.

Losses. FunnyNet uses the classification Lcls and the self-supervised contrastive
losses Lss. Here, we examine their impact by training FunnyNet with and without
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Table 9: Modality importance. We test FunnyNet on triplets of data with one or
more modalities coming from another timestamp (unsynced) and the rest coming from
the same timestamp (synced)

Synced Unsynced Pre Rec F1 Acc

A + V + F - 81.01 90.28 85.40 80.01

A + V F 75.10 80.13 77.64 66.23

A + F V 60.67 50.09 56.70 56.93

V + F A 54.55 36.00 43.37 53.00

V A + F 56.23 33.79 43.29 52.45

A V + F 65.71 82.00 72.01 62.19

Lss. Table 8 reports the results on Friends, where we observe that adding Lss

improves over +10 in all metrics. This reveals that using the auxiliary self-
supervised task of syncing audiovisual data actually helps to identify the funny
moments in videos.

Recall that the total loss is defined as: L=λssLss + λclsLcls, where λss, λcls

are the weighting parameters that control the relative importance of each loss.
In our training, we set the weighting parameters λss = 0.1 and λcls = 1.

Modality Importance. To examine the modality importance, we design the fol-
lowing experiment. We test FunnyNet on unsynced misaligned data, i.e., we
create triplets of data, where some modalities (one or more) come from different
timestamps and different class labels, e.g., the face and visual frames come from
the same timestamp i with label ‘positive’, whereas audio comes from timestamp
j with label ‘negative’ (fourth row). For this, we collect 100 samples (50 pos and
50 neg) from Friends. Table 9 reports the results. Note again that the results
are different from Table 1 in the main manuscript because this test is performed
only on a subset of Friends. The first row corresponds to the baseline, where
we use all modalities correctly. The cases where audio-video or audio-face are
correct (second and third rows, respectively) outperform the case where video
and face are correct (fourth row), thus indicating that audio is more robust than
the visual data (either frames or faces). Similarly, in rows 5-6, we observe that
when only audio is correctly synced leads to better performance than when only
frames are correctly synced, probably because funny moments are not always
accompanied by grimaces or facial expressions or general global context, but
they can be associated to speech. Overall, our findings show that audio plays
the most important role for funny moment prediction, which corroborates our
intuition that audio captures basic cues of funniness, such as tone, pauses, etc.

Influence of Fine-Tuning Recall that FunnyNet is pre-trained on Friends and
fine-tuned on different datasets for evaluation. To show the importance of fine-
tuning, we present in Table 10 quantitative results with (w/ FT) and without
fine-tuning on the dataset at hand (w/o FT). Specifically, we report FunnyNet
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Table 10: Comparison with or without fine tuning on different datasets. We show
precision (Pre), recall (Rec), F1 score (F1 ) and accuracy (Acc) on different datasets.

Model Metric TBBT MHD MUStARD URFUNNY

A+V

w/o FT

Pre 62.33 65.34 64.59 64.29
Rec 64.09 68.99 65.08 64.79
F1 63.20 67.12 64.83 64.54
Acc 65.78 65.10 64.44 61.23

A+F

Pre 60.45 65.34 62.33 60.12
Rec 61.90 68.09 64.49 60.09
F1 61.17 66.69 63.39 60.11
Acc 65.67 63.10 63.29 60.09

A+V+F

Pre 61.71 77.00 80.44 65.51
Rec 65.27 70.12 66.89 60.23
F1 63.44 73.40 73.04 62.76
Acc 64.12 70.02 67.43 61.22

A+V

w/ FT

Pre 72.09 79.66 78.97 86.08
Rec 68.54 80.15 79.12 76.34
F1 70.27 79.90 79.04 80.92
Acc 72.77 73.14 77.50 76.79

A+F

Pre 68.45 82.90 81.39 86.07
Rec 72.33 78.32 79.33 80.11
F1 70.34 80.54 80.35 82.98
Acc 72.89 73.89 78.90 79.44

A+V+F

Pre 70.31 84.72 79.72 90.13
Rec 68.83 83.19 83.19 78.09
F1 69.56 83.95 81.42 83.68
Acc 74.00 79.30 81.01 78.00

results with three cases of inputs: audiovisual data (A+V), audio and facial data
(A+F), audiovisual and facial data (A+V+F).

We observe that fine-tuning improves the overall performance, since different
datasets have very different funny labels and different types of humour. For
instance, the TBBT and MHD datasets have rather dense funny labels, i.e., each
testing video clip is much shorter than 8-secs. MUStARD and UR-FUNNY have
very uneven samples, ranging from 1 to 15 seconds. All these are different to the
Friends training setup, where FunnyNet is pre-trained. Fine-tuning FunnyNet
enables it to learn the biases between different datasets, leading to better results.

However, for all datasets, even without fine-tuning the accuracy (Acc) is be-
tween 60% and 70% (+10-20% compared to random). This shows that using
pre-trained models on the same task helps the network generalize better. No-
tably, the lowest accuracy is on UR-Funny, where for all input combinations is
accuracy is barely above 60%. For instance, we have on UR-Funny 61.2% for
A+V, 60.1% for A+F, and 61.2% for A+V+F vs 65.1% for A+V, 63.1% for
A+F and 70.0% for A+V+F for MHD. This is expected due to the domain shift
between UR-Funny and the other four datasets (TED talks vs sitcoms).
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Table 11: Comparison of laughter detection feature extraction. We compare results
of our laughter detector using two audio feature extractors and their combination

Temporal Det IoU = 0.3 Det IoU = 0.7
Acc Pre Rec F1 Pre Rec F1 Pre Rec F1

Ours Wav2CLIP[11] 77.56 64.49 63.66 63.70 91.25 61.23 73.07 49.74 33.45 39.89
Ours BYOL-A[12] 85.97 76.94 79.38 77.81 94.57 82.25 87.83 54.07 47.11 50.27
Ours [11] + [12] 85.91 77.13 78.80 77.62 94.52 81.91 87.60 54.18 47.02 50.26

3 Unsupervised Laughter Detection

Laughter Detection Metrics. To evaluate our laughter detector, we use: (a)
sample-scale at the detection level: we compute the IoU between each pair of
predicted and ground-truth segments and consider true positives the samples
with IoU greater than a threshold; (b) frame-scale at the temporal level: for
each frame, we check if it is correctly predicted as laughter or not. Then, we
compute precision, recall and F1 score.

Note, at the detection level, we cannot compute Acc as the true negatives
cannot be defined since there are no negative predictions.

Influence of the Feature Extraction. For feature extraction, we measure the effi-
ciency of two pre-trained encoders and their combination, i.e. concatenation of
the two feature vectors: BYOL-A [12] and Wav2CLIP [11]3.

We report the results in Table 11. In addition to the analysis in Section 5.2
in the main manuscript, we note that combining the two audio representations
does not increase our detector performances: BYOL-A [12] embedding contains
all the important information.

Influence of Clustering on the Detection Performance. Our unsupervised laugh-
ter detector (Figure 3 in the main manuscript) takes raw waveforms as input
to detect laughters. It consists of (i) removing voices by subtracting channels,
(ii) detecting peaks, and (iii) clustering audios to music and laughter. Here, we
examine the impact the number K of clusters from K-means has on the final
laughter detection performance.

In our experiments, we observe that there are much more laughter chunks
than music chunks. Hence, we consider the smallest obtained cluster as being the
music cluster that we remove and keep the laughter cluster. Figure 7 shows the
performance of the detection pipeline at the detection (red lines) and temporal
(blue lines) level as a function of different number of clusters (x axis). We observe:

– For 1 cluster: Using one cluster is equivalent to no clustering.

3 Inspired by [13], BYOL-A [12] learns audio representations in a self-supervised man-
ner by minimizing a similarity loss between outputs of two different augmentations
of the same input. Wav2CLIP [11] learns a robust audio representation by distilling
from CLIP [14].
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Fig. 7: Evolution of the temporal (blue) and detection (red) F1 scores according to
the number of clusters chosen for the K-means algorithm at the end of the laughter
detection pipeline

– For 2 clusters: we note that F1 scores reach a global minimum. Here, there
is not enough degree of freedom for the K-means algorithm, which cannot
detect the centroid of the music cluster as it is a small one.

– Between 3 and 6 clusters: we note that F1 scores are higher than for 1 cluster.
Here, there are enough degrees of freedom for the K-means algorithm to
correctly detect the centroid of the music cluster.

– Between 7 and +∞ clusters: we note that F1 scores tend to return to the
same value as for 1 cluster. Here, there are too many degrees of freedom for
the K-means algorithm, and therefore it detects multiple centroids for the
music cluster. Thus, the higher the number of clusters, the more small music
sub-cluster we have, with the extreme case of having one cluster per sample,
thus having the same effect as no clustering.

Moreover, Figure 7 shows that the detection F1 score (red line) is less sensi-
tive to the number of clusters than the temporal F1 score (blue line). This can
be explained by the fact that music chunks are generally longer than laughter
chunks, and hence by removing longer false positive chunks we improve temporal
metrics, whereas the impact is less important at the sample scale for detection
metrics.

4 FunnyNet Videos

In the project page, we also include several videos that display the results when
applying FunnyNet on videos from several domains: Friends and TBBT (sitcoms
with canned laughter), Modern Family (sitcom without canned laughter) and
also videos from other domains, i.e., movies, stand-up comedies, and audiobooks
(see Section 6.3 in the main manuscript for more details).
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Canned Laughter: FunnyNet on sitcoms with canned laughter and stand-up come-
dies with live audience laughter. We apply FunnyNet on both sitcoms with
canned laughter and on a stand-up comedy with audience laughter. Videos ‘Fun-
nyNet - Sitcoms w/ laughter‘4 and ‘FunnyNet - Stand-up comedy‘5 display the
FunnyNet predictions on several clips from sitcoms (Friends and TBBT) and a
Jerry Seinfeld stand-up comedy, respectively. We select funny moments thanks
to the canned and audience laughter. We observe that FunnyNet correctly pre-
dicts the funny moments in videos. At the end of the videos, we also include
some failure cases, which mostly contain dark frames or difficult context, like
characters imitating laughter (see Section 6.2 in the main manuscript for more
details).

No Laughter: FunnyNet on sitcoms and movies without canned laughter. We
apply FunnyNet on the sitcom ‘Modern Family’, which does not contain canned
laughter, and which we manually annotate (see Section 6.3 in the main manuscript
for more details). We also apply FunnyNet on funny movie clips, that we select
based on our own subjectivity, since they are not highlighted by laughter. Video
‘FunnyNet - Sitcoms w/o laughter‘6 and ‘FunnyNet - Movies‘7 show examples
of Modern Family and movie scenes, respectively. We add canned laughter af-
ter each well detected funny moment. At the end of the videos, we also display
some misclassified moments, for instance, we include one example of a scene with
a character yelling at somebody else: situationally not funny, yet, contextually
funny.

Funny Moments in Audio-Only Contents. The video ‘FunnyNet - Sitcoms w/o
laughter‘8 contains audio tracks of people saying jokes or reading a funny book,
where we add canned laughter when a funny moment is well detected. We observe
that FunnyNet predicts correctly the funny moments even without any visual
cue. We also include a failure case where the joke punchline is not stressed
enough.

4 https://www.youtube.com/watch?v=6FHsm50Ie4g
5 https://www.youtube.com/watch?v=0uwHNKAJ0kY
6 https://www.youtube.com/watch?v=sb-bjW_gkj4
7 https://www.youtube.com/watch?v=l5u2g1v8ua8
8 https://www.youtube.com/watch?v=wuy2p_kPfpA

https://www.youtube.com/watch?v=6FHsm50Ie4g
https://www.youtube.com/watch?v=0uwHNKAJ0kY
https://www.youtube.com/watch?v=sb-bjW_gkj4
https://www.youtube.com/watch?v=l5u2g1v8ua8
https://www.youtube.com/watch?v=wuy2p_kPfpA
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