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In this supplementary material, we provide additional details on our method
and more evaluation results. First, we provide more details on our ReAGFormer
in Sec. 1 and Sec. 2, including network architecture and training details. Then,
more ablation studies are provided in Sec. 3. Moreover, we also report the per-
category quantitative results of our method on the ScanNet V2 [1] and SUN
RGB-D [2] datasets in Sec. 4. Finally, we show more qualitative results in Sec. 5.

1 Network Architecture

Our ReAGFormer consists of four downsampling stage. The first stage is a stan-
dard set abstraction layer [3], and all other stage consist of group embedding
and reaggregation Transformer block with affine group features (ReAGF Trans-
former block). Note that we do not use the ReAGF Transformer block in stage 1,
we argue that the point feature extraction is not complete in the shallower lay-
ers, and therefore the dependencies between points cannot be effectively modeled
using Transformer [4] in the early stages. Another advantage of such an architec-
ture is the reduced computational cost, since the shallow layer has more points
and modeling dependencies on n points requires O(n2) computational complex-
ity. For upsampling stage, we use 2 feature propagation layers with multi-scale
connections. The model architecture details are shown in Table 1.

In the ReAGF Transformer block, we set the number of heads of ASA and
RCA to 8, and use 2 MLP layers. The feature dimension of each MLP layer is set
to [Cin, 4Cin, Cin] where Cin is the dimension of input feature. All MLP layers
and attention modules use dropout with the probability 0.1.

To eliminate the semantic gap between group embedding and ReAGF Trans-
former block, we introduce the feature connection bridge. From group embedding
to ReAGF Transformer block, we adopt linear projection and layer normaliza-
tion, without the activation function. For the output of the ReAGF Transformer
block, we adopt the linear projection, batch normalization and ReLU activation
function before being fed to the subsequent group embedding.
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Table 1. Network architecture details. “SA”, “ReAGF” and “M-FP” denote the set
abstraction layer, the ReAGF Transformer block and the feature propagation layer
with multi-scale connections, respectively. “Input” and “Output” are the number of
input and output points. We follows the corresponding baseline [5–7] to set Nin. r
indicates the ball query radius in the group embedding, and k is the number of points
in each group. Shared MLP[c1, c2, ..., ci] indicate the feature dimensions of the MLP
in the group embedding or feature propagation layer where ci denotes the feature
dimension of the i-th layer.

Stage Type Input Output r k Shared MLP
stage 1 SA Nin 2048 0.2 64 [3+1,64,64,128]
stage 2 ReAGF 2048 1024 0.4 32 [128+3,128,128,288]
stage 3 ReAGF 1024 512 0.8 16 [288+3,128,128,288]
stage 4 ReAGF 512 256 1.2 16 [288+3,128,128,288]

upsampling M-FP 256 512 - - [288+288,288,288]
upsampling M-FP 512 1024 - - [288+288+288+288,288,288]

2 Training Details

In this section, we provide more training details on the three models, i.e. ReAGF-
VoteNet, ReAGF-BRNet and ReAGF-Group-Free.

ReAGF-VoteNet. For the ScanNet V2 dataset, we follow VoteNet [5] to
randomly sample 40K points as input, and each point contains coordinate infor-
mation and height information but does not use color information. During data
augmentation, we randomly flip the point cloud, rotate each point uniformly in
the range [−5◦, 5◦] and scale each point uniformly in the interval [0.9, 1.1]. The
model is optimized using the AdamW optimizer [8] with the batch size 8 and
initial learning rate 0.002 for 240 epochs. The learning rate is decayed at 160
epoch and 200 epoch with a decay ratio of 0.1. The learning rate of the Trans-
former block is always 1/20 of the learning rate of the other part. We apply a
weight decay of 0.1 and a gradient normalized clipping with a maximum norm
of 10.

For SUN RGB-D, we follow VoteNet to use 20K points as input and train
model for 180 epochs with the batch size 8 and initial learning rate 0.001. The
learning rate is decayed by 0.1 at 120 epoch and 160 epoch. Other training
settings are the same as ReAGF-VoteNet on ScanNet V2. For both datasets, the
model is implemented with MMDetection3D [9] and trained on a single GPU.

ReAGF-BRNet. For the ScanNet V2 dataset, we follow the input and data
augmentation of BRNet [6], using 40K points as input and applying random
flips, random rotations and random scaling. Each point uses both coordinate
information and height information. We train model with the AdamW optimizer
[8]. The batch size, initial learning rate and weight decay are set as 8, 0.002 and
0.01, respectively. We train the model for 220 epochs and decay the learning
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rate by 10× after 140 epochs and 180 epochs. The learning rate of the Trans-
former block is 1/20 of the other parts. We follow BRNet [6] to apply a gradient
normalized clipping, and the maximum norm is set to 10.

For the SUN RGB-D dataset, we also follow BRNet [6] to randomly sample
20K points from raw point clouds as input. We train the model with the initial
learning rate 0.001 and batch size 8. The other settings follow ReAGF-BRNet
on ScanNet V2 dataset. For the SUN RGB-D and ScanNet V2 datasets, we
implement our model based on the officially released code of BRNet and train
it on a single GPU.

ReAGF-Group-Free. For the ScanNet V2 dataset, we follow Group-Free
[7] to use 50K points as input and use random flip, random rotation in the
interval [−5◦, 5◦] as well as random scaling in the range [0.9, 1.1]. We train the
network with the batch size 8, initial learning rate 0.0015 for 400 epochs, using
the AdamW optimizer [8]. Following Group-Free, the learning rate is decayed by
0.1 at 280 epoch and 340 epoch. In the training stage, the weight decay is set to
5e-4 and a gradient normalized clipping with a maximum norm of 0.1 is applied.
The learning rate of the Transformer block is set to 1/20 of the rest part of the
network. Our experiments are conducted on the MMDetection3D toolbox. We
train the model on a single GPU.

For the SUN RGB-D dataset, we follow the input of Group-Free, i.e. using
20K points as input for each point clouds. The batch size and initial learning rate
are set to 8 per-GPU and 0.002, respectively. The rest of the implementation
is consistent with ReAGF-Group-Free on ScanNet V2 dataset. Our model is
implemented based on the officially released code of Group-Free and trained on
two GPUs

3 More Ablation Studies

In this section, we conduct more ablation studies to analyze our model. Our
experiments are trained on ReAGF-VoteNet, and evaluated on the ScanNet V2
val set.

Different Feature Reaggregation Methods. To select the appropriate sym-
metric function for feature reaggregation in our model, we investigate the perfor-
mance using different symmetric function (i.e. max pooling and average pooling)
while keeping the rest part of network fixed, and the results are shown in Table 2.
We observe that max pooling achieves better detection results, thus we select
max pooling in our ReAGFormer.

Multi-scale Connection on Skip Connection. Except for introducing multi-
scale connection on the feature propagation layer, we also use multi-scale connec-
tion on the skip connection between the downsampling and upsampling stage.
Table 3 ablates the effectiveness of multiscale connection on skip connection.
We can observe that multi-scale form of skip connection is beneficial to improve
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Table 2. Ablation study on the performance of different feature reaggregation methods.

Method mAP@0.25 mAP@0.5
Average pooling 62.8 40.7
Max pooling 66.1 45.4

Table 3. Ablation study on the effectiveness of multi-scale connection on skip connec-
tion.

Multi-scale connection on skip connection mAP@0.25 mAP@0.5
- 65.2 44.4
X 66.1 45.4

the detection performance, which indicates that it can further boost the feature
fusion efficiency.

Comparison with affine transformation in PointMLP. Both our pro-
posed method and PointMLP [10] use affine transformation module. However,
the methodology is also different. We use the MLP in the affine transformation
(AT) module to align different group features. Let us disregard the activation
function and BN for a moment, at this point the MLP can be represented as
Mul(F,Φ), where F ∈ Rk×C is the group features, Φ ∈ RC×C is the parameter
matrix, and Mul(·) is the matrix multiplication. When Φ is a diagonal matrix,
the diagonal parameters can be transformed into φ ∈ RC , andMul(F,Φ) can be
equated to F �φ, where � is the Hadamard product, i.e., it is transformed into
the form of the affine transformation of PointMLP. This means that the affine
transformation in PointMLP is actually a special case of our AT module and
our method is more generalized. In addition, we also apply PointMLP to the 3D
object detection task. Specifically, we replaced the original backbone network in
VoteNet [5] with PointMLP without changing the other network architectures.
We compare its result with our ReAGF-VoteNet, as shown in Table 4.

4 More Quantitative Results

We report per-category results on the ScanNet V2 and SUN RGB-D datasets.
Table 5 and Table 6 show the per-category results for different 3D IoU thresholds
on ScanNet V2, respectively. Table 7 and Table 8 show the per-category results
for different 3D IoU thresholds on SUN RGB-D dataset, respectively. We observe
that our method can significantly improve detection performance, especially for
cluttered, thin or similarly shaped objects. For example, for the ScanNet V2
dataset, our ReAGF-BRNet obtains 3.9%, 6.4% and 9.0% improvement com-
pared to BRNet [6] for bookshelf, window and shower curtrain, respectively, on
the more challenging mAP@0.5. Similar results can be observed with our method
on the SUN RGB-D dataset.
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Table 4. Comparison of our ReAGF-VoteNet and PointMLP for 3D object detection.

Method SUN RGB-D ScanNet V2
mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

PointMLP + VoteNet 60.9 35.9 62.2 39.5
ReAGF-VoteNet 62.3 40.7 66.1 45.4

Table 5. 3D object detection results of mAP@0.25 for per-category on ScanNet V2
dataset. VoteNet∗ indicates that the implementation is based on MMDetection3D [9],
which has better results than the original paper [5]. “+Ours” denotes replacing the
original backbone with our ReAGFormer without changing the other network archi-
tectures. For Group-Free [7], we report the results for 6-layer decoder and 256 object
candidates.

Method cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP@0.25
VoteNet∗ [5] 47.7 88.7 89.5 89.3 62.1 54.1 40.8 54.3 12.0 63.9 69.4 52.0 52.5 73.3 95.9 52.0 92.5 42.4 62.9

+Ours (ReAGF-VoteNet) 53.9 88.4 89.5 86.9 68.3 57.7 51.5 58.3 16.5 66.4 71.3 61.2 53.1 74.4 98.4 51.0 91.6 50.6 66.1
BRNet [6] 49.3 88.3 91.9 86.9 69.3 59.2 45.9 52.1 15.3 72.0 76.8 57.1 60.4 73.6 93.8 58.8 92.2 47.1 66.1

+Ours (ReAGF-BRNet) 51.7 86.8 92.5 90.6 67.0 60.1 52.4 58.4 18.5 67.3 72.7 64.1 60.7 75.2 96.5 61.9 88.8 48.7 67.4
Group-Free [7] 54.1 86.2 92.0 84.8 67.8 55.8 46.9 48.5 15.0 59.4 80.4 64.2 57.2 76.3 97.6 76.8 92.5 55.0 67.3

+Ours (ReAGF-Group-Free) 50.7 86.9 92.3 85.9 67.6 59.0 47.2 39.5 17.6 61.1 80.6 65.3 55.8 79.8 99.2 67.1 92.9 59.4 67.1

Table 6. 3D object detection results of mAP@0.5 for per-category on ScanNet V2
dataset. VoteNet∗ indicates that the implementation of the result is based on the
MMDetection3D [9] toolbox, which has better results than the original paper [5].
“+Ours” denotes replacing the original backbone with our ReAGFormer without chang-
ing other network architectures. For Group-Free [7], we report the results for 6-layer
decoder and 256 object candidates.

Method cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP@0.5
VoteNet∗ [5] 14.6 77.8 73.1 80.5 46.5 25.1 16.0 41.8 2.5 22.3 33.3 25.0 31.0 17.6 87.8 23.0 81.6 18.7 39.9

+Ours (ReAGF-VoteNet) 20.4 80.6 77.4 72.0 51.4 27.8 23.3 48.3 6.4 27.7 43.5 32.3 43.8 30.1 91.0 28.8 80.5 32.3 45.4
BRNet [6] 28.7 80.6 81.9 80.6 60.8 35.5 22.2 48.0 7.5 43.7 54.8 39.1 51.8 35.9 88.9 38.7 84.4 33.0 50.9

+Ours (ReAGF-BRNet) 30.5 80.7 84.4 86.6 60.2 38.5 28.6 51.9 5.1 33.9 50.3 40.9 47.1 44.9 94.0 38.8 88.4 35.0 52.2
Group-Free [7] 23.0 78.4 78.9 68.7 55.1 35.3 23.6 39.4 7.5 27.2 66.4 43.3 43.0 41.2 89.7 38.0 83.4 37.3 48.9

+Ours (ReAGF-Group-Free) 25.7 80.3 80.6 74.2 57.6 34.5 21.5 34.8 8.5 35.6 63.4 48.2 41.8 31.6 91.3 41.4 86.8 43.1 50.0

Table 7. 3D object detection results of mAP@0.25 for per-category on SUN RGB-D
dataset. VoteNet∗ indicates that the implementation of the result is based on the
MMDetection3D [9] toolbox, which has better results than the original paper [5].
“+Ours” denotes replacing the original backbone with our ReAGFormer without chang-
ing other network architectures. For Group-Free [7], we report the results for 6-layer
decoder and 256 object candidates.

Method bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP@0.25
VoteNet∗ [5] 75.5 85.6 31.9 77.4 24.8 27.9 58.6 67.4 51.1 90.5 59.1

+Ours (ReAGF-VoteNet) 76.8 85.4 35.2 76.4 30.7 38.8 69.0 67.0 53.4 90.6 62.3
BRNet [6] 76.2 86.9 29.7 77.4 29.6 35.9 65.9 66.4 51.8 91.3 61.1

+Ours (ReAGF-BRNet) 74.3 87.7 32.2 78.3 30.2 33.2 66.5 68.4 52.5 91.4 61.5
Group-Free [7] 80.0 87.8 32.5 79.4 32.6 36.0 66.7 70.0 53.8 91.1 63.0

+Ours (ReAGF-Group-Free) 79.2 87.1 31.6 78.6 32.0 38.1 65.4 69.7 55.1 91.7 62.9

5 More Qualitative Results

We provide additional visualization results on the ScanNet V2 and SUN RGB-D
datasets. Fig. 1 and Fig. 2 show the results on the ScanNet V2 dataset. Fig. 3 and
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Table 8. 3D object detection results of mAP@0.5 for per-category on SUN RGB-D
dataset. VoteNet∗ indicates that the implementation of the result is based on the
MMDetection3D [9] toolbox, which has better results than the original paper [5].
“+Ours” denotes replacing the original backbone with our ReAGFormer without chang-
ing other network architectures. For Group-Free [7], we report the results for 6-layer
decoder and 256 object candidates.

Method bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP@0.5
VoteNet∗ [5] 45.4 53.4 6.8 56.5 5.9 12.0 38.6 49.1 21.3 68.5 35.8

+Ours (ReAGF-VoteNet) 48.4 59.6 12.2 57.8 8.2 24.8 52.8 53.4 24.3 66.1 40.7
BRNet [6] 55.5 63.8 9.3 61.6 10.0 27.3 53.2 56.7 28.6 70.9 43.7

+Ours (ReAGF-BRNet) 61.5 65.7 13.1 63.7 12.7 23.6 49.8 60.0 31.5 66.7 44.8
Group-Free [7] 64.0 67.1 12.4 62.6 14.5 21.9 49.8 58.2 29.2 72.2 45.2

+Ours (ReAGF-Group-Free) 58.0 67.9 13.5 62.6 15.0 23.5 56.5 56.8 31.4 71.9 45.7

Fig. 4 show the results on the SUN RGB-D dataset. The figures demonstrate that
our method can generate more reasonable and accurate results. Fig. 5 visualizes
the weights learned by our reaggregation cross-attention (RCA). We can observe
that the reference point (green dot) focuses more on the points that belong to the
same object as itself, which shows that our RCA enables the symmetric function
to focus more on the object-level information.

References

1. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: CVPR. pp. 5828–5839
(2017)

2. Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding bench-
mark suite. In: CVPR. pp. 567–576 (2015)

3. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. NeurIPS 30, 5099–5108 (2017)

4. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: NeurIPS. pp. 5998–6008 (2017)

5. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detec-
tion in point clouds. In: ICCV. pp. 9277–9286 (2019)

6. Cheng, B., Sheng, L., Shi, S., Yang, M., Xu, D.: Back-tracing representative points
for voting-based 3d object detection in point clouds. In: CVPR. pp. 8963–8972
(2021)

7. Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3d object detection via
transformers. In: ICCV (2021)

8. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

9. Contributors, M.: MMDetection3D: OpenMMLab next-generation platform for
general 3D object detection. https://github.com/open-mmlab/mmdetection3d
(2020)

10. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and lo-
cal geometry in point cloud: A simple residual mlp framework. In: International
Conference on Learning Representations (2021)



Supplementary Material for ReAGFormer 7

Bed

Table

Sofa

Chair

Toilet

Desk

Other 

Shower Cur.

Bookshelf

Bathtub

Cabinet

Door

Window

Picture

Counter

Curtain

Refrig.

Sink

Ground Truth VoteNet ReAGF-VoteNet

Fig. 1. Qualitative detection results on ScanNet V2 dataset. ReAGF-VoteNet denotes
the replacement of the baseline original backbone with our ReAGFormer. Color is used
for better illustration purpose, and it is not used in the experiment. (Best viewed in
color.)
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Fig. 2. Qualitative detection results on ScanNet V2 dataset. ReAGF-VoteNet denotes
the replacement of the baseline original backbone with our ReAGFormer. Color is used
for better illustration purpose, and it is not used in the experiment. (Best viewed in
color.)
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Fig. 3. Qualitative detection results on SUN RGB-D dataset. ReAGF-VoteNet denotes
the replacement of the baseline original backbone with our ReAGFormer. Images and
colors are only used for better illustration, and they are not used in our network. (Best
viewed in color.)
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Fig. 4. Qualitative detection results on SUN RGB-D dataset. ReAGF-VoteNet denotes
the replacement of the baseline original backbone with our ReAGFormer. Images and
colors are only used for better illustration, and they are not used in our network. (Best
viewed in color.)

Image RCA

Fig. 5. Visualization of attention weights for reaggregation cross-attention (RCA).
Green dot indicates reference point, and redder color indicates greater weight.


