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1 Discussion

The proposed progressive attention manifold alignment (PAMA) consists of lin-
ear transformations that redistribute the style feature vectors in a common sub-
space. The redistributed style feature vectors are then linearly interpolated to
their most similar content feature vectors. By recurrently interpolating between
the content and style feature vectors, the content manifold is aligned to the style
manifold along a geodesic between them. However, why this manifold alignment
process can solve the style degradation problem?

Firstly, the manifold alignment process can help the attention module parse
the similarity information and establish complex relations. Since the style feature
vectors are linearly fused into the content feature vectors, the attention module
in the next stage can easily parse the similarity information. As the content
feature interpolates with more linear components from the style feature, the
content manifold is aligned to the style manifold, enabling the attention module
to parse complex structural similarities.

Secondly, all of the transformations applied to the style feature are linear
transformations in a common space, which can be considered as rearranging the
patches of the style image. The linear property helps to preserve the semantic
information of the style feature and avoid information loss.

2 The Effectiveness of PAMA

2.1 The Channel Response of the Channel Alignment Module

To verify the effectiveness of the channel alignment module, we calculate the
mean values of the content and style features before and after the channel align-
ment module. We calculate the mean values of features from the third stage
of alignment. Since the features have 512 channels, the mean values are 512-
dimensional vectors, which are shown in Fig.1. Although there is a considerable
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Fig. 1: The channel response of features. The first row shows the mean values
of the content and style features before channel alignment, and the second row
shows the mean values of the aligned features. The blue and red lines denote
the content and style feature, respectively. The content and style images are the
same as the example in the left of Fig. 2.

discrepancy between the mean values of the content and style features (the first
row), the channel alignment module can re-weight the channels to align their
distribution (the second row). This phenomenon proves that the proposed chan-
nel alignment module can emphasize the related feature channels to align the
two distributions.

2.2 The Attention Map of the Attention Module

To demonstrate that the proposed PAMA can align the content and style mani-
folds to help the attention module parse similarities, we draw the attention maps
of all the manifold alignment stages (Fig.2). The sample on the left side contains
paired content and style images with a cat and a tiger. It is evident for humans
that the eyes of the cat and the tiger should be matched. However, since the
eyes of the cat and tiger are in different colors and shapes, it is challenging for
an unsupervised learning algorithm to build this correspondence automatically.
The proposed PAMA can gradually align the content manifold to the style man-
ifold to better build complex relations without supervision. Fig.2 left shows that
the attention is relatively scattered in the early stages but converges in the late
stages. For unpaired content and style images like Fig.2 right, although atten-
tion is more dispersed early on, it will eventually converge. The proposed PAMA
can align the manifolds and establish stable semantic correspondence without
supervision.
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Fig. 2: The attention map. The example on the left side shows the attention map
of the eye area of the content image. The example on the right side shows the
attention map of the cloud area. The chosen areas are framed by red boxes.
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Fig. 3: Space-aware Interpolation results. The first row is the visualization of the
adaptive weight W , where the yellow pixels denote higher stylization, and the
blue pixels denote higher content preservation. The second row is the interpola-
tion results of the first row respectively. (a) Interpolation of the first stage; (b)
Interpolation of the second stage; (c) Interpolation of the third stage.

2.3 The Spatial Interpolation Weights

This part verifies the effectiveness of the space-aware interpolation of all three
manifold alignment stages. Fig. 3 demonstrates that the space-aware interpola-
tions are sensitive to edge information and tend to preserve content structures
around the edges. This can help the network to remove the local inconsistency
(or distortions) in salient areas. Also, the interpolation module has learned to
detect the uniform regions and render them with higher strength. In this way,
we can align to the style manifold without hurting the content manifold struc-
ture significantly. For the reason that we decrease the self-similarity content loss
gradually during manifold alignment, the interpolation module fuses more style
information in the latter stages (more yellow pixels in Fig. 3), producing results
with vivid style patterns.
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Fig. 4: Comparison between STROTSS [1] and the proposed PAMA. The first
row: content/style images; the second row: STROTSS; the third row: PAMA.

content/style AdaIN WCT SANet AdaAttN StyleFormer IEC MAST OursStyTr^2

Fig. 5: The updated version of the Fig.1 in our paper.

3 Additional Comparison

To further evaluate the effectiveness of the proposed PAMA, we want to compare
it with other style transfer methods [1, 3, 4] adopting the relaxed earth mover dis-
tance (REMD). However, the STROTSS is an online optimization based method,
which takes around a minute to stylize a single 512px image using a Tesla V100
GPU (PAMA only takes 10ms). The [3, 4] are single style transfer methods that
require pre-training for every style. It is an unfair comparison that the proposed
PAMA is an arbitrary style transfer method.

Fig.4 shows the results of STROTSS and the proposed PAMA. The single
style transfer methods [3, 4] are omitted because they cannot be applied to arbi-
trary styles. Even if the STROTSS is an online optimization based method, the
proposed PAMA can generate results with comparable style quality. But still,
the style quality of the STROTSS is better.

Meanwhile, the arbitrary style transfer method StyTr2 [5] also uses the at-
tention mechanism. This is a very recent paper published on CVPR 2022, and
it took us some time to redistribute the questionnaires for the user study. We
decide to update Fig.1 (the Fig.5 here), Fig.4 (the Fig.6 here), and the user
study of our original paper for further comparison. The new user study follows
the same method introduced in our paper.
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content/style AdaIN WCT SANet AdaAttN StyleFormer IEC MASTStyTR2 Ours

Fig. 6: The updated version of the Fig.4 in our paper.

4 Limitation

In style transfer tasks, the generated images often suffer from checkerboard arti-
facts (or lattice-like artifacts). The checkerboard artifacts is a common problem
of style transfer methods, especially for patch based methods like StyleSwap
[13], AdaAttN [9], StyleFormer [10], and AAMS [14]. Since the proposed PAMA
is a patch based arbitrary style transfer algorithm, it also has this problem. A
common solution is adopting the total variance loss for pixel-level smoothing,
which is adopted by the pioneering style transfer methods proposed by Gatys et
al.[15, 16], Johnson et al., and Ulyanov et al.[17, 18]. A simpler solution is using
the photo-realistic smoothing technique proposed in PhotoWCT [2], or we can
apply gaussian blurring. We applied photo-realistic smoothing to the proposed
PAMA, which can smooth the stylization results while preserving their content
structure. The smoothed results are demonstrated in Fig.7.

5 More High-resolution Results

Due to the limitation of file size, we used a compressed version of stylization
results for the conference paper. Here we provide high-resolution results (Fig.8).
More results with 0.5x, 2x, and 4x style losses are also shown in Fig.9, Fig.10,
Fig.11, respectively. Please check the following pages.
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Table 1: Updated User Study.

method content quality style quality overall quality total

AdaIN [6] 235 153 204 592
WCT [7] 197 207 189 593
SANet [8] 322 314 336 972
AdaAttN [9] 1164 478 717 2359
StyleFormer [10] 563 325 423 1311
IEC [11] 862 479 744 2085

StyTr2̂ [5] 726 615 890 2231
MAST [12] 238 182 219 639
Ours 693 2247 1278 4218

Fig. 7: The photorealistic smoothing [2]. The first row: content/style images; the
second row: PAMA; the third row: PAMA with photorealistic smoothing.



PAMA 7

Content

Style

Fig. 8: Stylization results of the original PAMA.
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Fig. 9: Stylization results with 0.5x style losses.
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Fig. 10: Stylization results with 2x style losses.
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Fig. 11: Stylization results with 4x style losses.
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