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A Additional Implementation Details

Additional details of the shot encoder (i.e., ResNet-50) and the contextual rela-
tion network (i.e., Transformer) are as follows. For the shot encoder, each shot is
given by three key-frames (i.e., N, = 3) and a shot encoding e is given by the av-
eraged feature after inferring individual three key-frames using ResNet-50; note
that, to speed up the pre-training, we use randomly sampled one key-frame out of
three. For Transformer, the hyperparameters are set to (L = 2, H = 768, A = 8)
where L, H and A mean the number of stacked transformer blocks, the dimen-
sion of hidden activation and the number of attention heads, respectively. We
apply the Dropout technique [8] on hidden states and attention weights with a
probability of 10% and use GELU [3] as an activation function.

For data augmentation of key-frames in a shot, we adopt PyTorch’s torchvi-
sion package. Given a sequence of shots, we apply random crop (with resize),
random flip, random color jitter and random Gaussian blur. In detail, firstly,
the cropping is performed with a random size (i.e., scales between [0.14, 1.0]
of the original size) and a random aspect ratio (between 3/4 to 4/3), and then
the cropped one is resized to (224,224). Secondly, we apply a random horizontal
flip with a probability of 50%. Thirdly, as a color augmentation, we perform a
random color jitter (with a probability of 80%) and a random color dropping
to gray scale (with a probability of 20%). The color strength parameters for
jittering are set to {brightness, contrast, saturation, hue} = (0.2,0.2,0.2,0.05).
Finally, Gaussian blur is applied with a probability of 50% where a standard-
deviation of spatial kernel is set to [0.1, 2.0]. Note that the same augmentations
are applied to all key-frames in the input sequence S, of shots while differ-
ent color jittering is applied on individual shots. Also, for S8, we perform a
different augmentation compared to that applied on S,,.

During the pre-training stage, the model parameters are randomly initialized
and then trained using the proposed pretext tasks. We use LARS [9] to learn
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Fig. 1. Comparison between existing approaches and ours for video scene segmenta-
tion. The existing approach focuses only on learning shot-level representation given by
shot encoder (fenc). In contrast, our boundary-aware pre-training method focuses on
learning contextual representation by taking neighbor shots into account. Thus, our
method can learn both the shot encoder (fenc) and the contextual relation network
(CRN; forn) and transfer their parameters during the fine-tuning stage.

the model (except for parameters of bias and Batch-Normalization) with a mini-
batch of 256 shot sequences, a base learning rate of 0.3, momentum of 0.9, weight
decay of 1076 and trust coefficient of 0.001. We pre-train the model for 10 epochs
with a linear warm-up strategy for 1 epoch (i.e., 10% of whole training epochs)
followed by learning rate decaying with a cosine schedule. The temperature 7
in Eq. (5) in the main paper is set to 0.1. Using 16 V100 GPUs with mixed
precision training, it takes less than 2 days for pre-training.

In the fine-tuning stage, we initialize the parameters of the shot encoder
and the contextual relation network by that of the pre-trained ones. However,
we freeze the parameters of the shot encoder following [2]. We fine-tune the
contextual relation network and the scene boundary detection head for 20 epochs
using Adam [5] with a learning rate of 107° and a mini-batch of 1024 training
examples. The learning rate is decayed with a cosine schedule without warm-up.

B Comparison with Shot-level Self-supervised Learning

As mentioned in the main paper, our approach is distinguishable from the
shot-level pre-training approach [2] in that the objectives used in our approach
(BaSSL) is to learn contextual representations by taking neighbor shots into
account. Fig. 1 provides a clear summary of comparison between shot-level pre-
training and our boundary-aware pre-training, BaSSL. Firstly, shot-level pre-
training takes a pair of two shots as an input while BaSSL takes a sequence of
shots. Secondly, shot-level pre-training aims to train shot encoder (fgnxc) only,
while BaSSL trains both the shot encoder and the contextual relation network
(fexc and fcrn). In contrast to the shot-level pre-training that requires to train
forn from scratch during the fine-tuning stage, BaSSL benefits from weight
transfer by pre-training the parameters of fcry with large-scale in-domain data
in advance. Note that the results (M6-7) in Table 2 in the main paper show
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Table 1. Comparison between the shot-level and the boundary-aware pre-training.

Check List Shot-level Pre-training Boundary-aware Pre-training
Network architecture fenc fenc + forn

Training input a pair of shots (#shots: 2) a sequence of shots (#shots: 2K+1)
Weights transferable for fenc? yes yes

Weights transferable for forn? no yes

Positive pair in contrastive learning shot-shot shot-scene

Table 2. Comparison of existing video scene segmentation datasets. Note that we
brought the table from [6] with an update on the MovieNet-SSeg dataset.

Dataset #Video #Scene #Shot Time (h) Source
BBC [1] 11 670 49K 9 Documentary
ovSsD [7] 21 300 10K 10 MiniFilm
MovieNet-SSeg [4] 318 42K 500K - Movies
MovieNet [4] 1,100 - 1.6M - Movies

Table 3. Comparison between our method and shot-level pre-training baselines on
BBC and OVSD datasets in an unsupervised setting. The numbers mean AP and the
best model is highlighted in bold.

Model SimCLR (instance) SImnCLR (temporal) SimCLR (NN) BaSSL

BBC 32.34 34.18 32.92 39.98
OVSD 25.45 24.92 25.02 28.68

that the weight transfer of focrn is important to improve the video scene seg-
mentation performance. Finally, the contrastive learning objective in shot-level
pre-training drives the representations of two shots (query and positive) to be
close to each other, whereas Shot-Scene Matching objective in our approach per-
forms the same task but with a shot (query) and its associated scene (positive;
a sequence of shots). The Table 1 summarizes the aforementioned comparisons.

C Results on Additional Datasets

Table 2 shows the data statistics of different video scene segmentation datasets.
We found the limited number of datasets that provide the scene boundary an-
notations and, as far as we know, the MovieNet-SSeg [4] is the largest-scale
video scene segmentation dataset. We further compare BaSSL with shot-level
pre-training baselines on two additional datasets—BBC [1] and OVSD [7]. Note
that the training and test splits are not available and the dataset size is ex-
tremely limited (11 and 21 videos in BBC and OVSD, respectively); in addition,
2 out of 21 videos in OVSD is not available. Thus, we infer predictions using
models trained on MovieNet-SSeg without fine-tuning on BBC and OVSD (i.e.,
unsupervised setting). The results are summarized in Table 3. The result shows
the superiority of our method compared to shot-level pre-training baselines.
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Algorithm 1 DTW-based pseudo-boundary discovery
1: Input: Shot encoder fenc, contextual relation network fcrn, and an input shot
sequence S, = {Sp—K,...,Sn, ..., Snt+k } centered at n*® shot s, with neighbor size
K, two image augmentation functions )\Elmg7 )\iug

2 (B E) ([, )

3:fori =n—Kton+ K do

4: e; fENC(/\;ug(si)) extract shot-level representations for all shots

5: E, + {E,; e} append

6: end for

7: foriin {n— K, n+ K} do

8: e + fenc(Aaug(si)) extract shot-level representations for slow sequence
9: EsY « {ES°V;e;} append

10: end for

11: Sleft) grisht b o DTW(E,,, ES°V) apply dynamic time warping

12: Output: Two continuous non-overlapping sub-sequences Sleft and SteM and a
pseudo boundary shot s, p*.

D Algorithm for Pseudo-boundary Discovery

In this section, we describe the details of pseudo-boundary discovery method
applying DTW on S,, and S%1°. In practice, S,, is given as a mini-batch resulting
in a tensor with a shape of (B, S, Ni, C, H, W) where individuals mean the
batch size, the number of shots in S,, (i.e., 2K 4 1), the number of key-frames
in a shot, channels, frame height and frame width, respectively. Then, we obtain
Sslow ¢ RBX2ZXNkxCxXHXW that is composed of the first and last shots in S,,.
We apply two different augmentation functions into key-frames in S,, and S5°%,
respectively. Next, we compute encoded representation of shots from S,, and
Sslow ysing fpnc. Note that during the pre-training stage, we randomly sample
one key-frame among Ny candidates in a shot and then reshape the input tensor
as (B*S,C, H,W) or (B*2,C, H, W) to be forwarded by the shot encoder fgnc;
thus the tensor shape of the encoded shot representation is given by (B, S, D.)
or (B, 2, D.) after apply reshaping, where D, means the dimension of encoded
feature. Finally, given two sequences of encoded representation for S,, and S5!°%,
DTW provides two sub-sequences S'*f* and S!ight and a pseudo boundary shot
Sn+b+- LThe algorithm 1 illustrates the details. In addition, to demonstrate the
simplicity of the alignment computation using DTW, we include the PyTorch
code in Listing 1.1. The implementation of DTW can be done in 6 lines of python
code using tslearn package.

E More Ablation Study using NMI

Using NMI, we additionally perform ablation study of our algorithm by adding
pretext tasks one by one, and measure the corresponding NMI scores. The result
in Table 4 shows that better NMI score is achieved as more pretext tasks are
combined together. This tendency is also observed in our ablation in Table 3 in
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1 from tslearn import metrics
2 import numpy as np
; def compute_dtw_path(seq_1, seq_2):
4 Wi
Input:
6 seq_1: sparse shots embedding, shape = torch.size([2, dim])
7 seq_2: dense shots embedding, shape = torch.size ([N, dim]), N > 2
8 Output:
9 dtw_path: output of DTW algorithm, shape = torch.size ([N, dim])

10 wun

12 cost = (1-torch.bmm(seq_1, seq_2.transpose (1, 2))).numpy ()
dtw_path = []
14 for bsz in range(cost.shape[0]):
_path, _ = metrics.dtw_path_from_metric(
16 cost [bsz], metric="precomputed")

17 dtw_path.append(np.asarray(_path)) # torch.Size ([N, dim])
18 return dtw_path

Listing 1.1. PyTorch code for alignment computation using DTW given two sequences.
The tslearn package is used for DTW path calculation.

Table 4. Ablation study on the combination of boundary-aware pretext tasks measured
by NMI.

Pretext Tasks NMI Gain (A%)
SSM 85.48  0.00%
SSM-+MSM 85.64 +0.19%

SSM+MSM+CGM 85.93 +0.33%
SSM+MSM+CGM+PP 86.71  +0.91%

the main paper, which indicates the NMI score of pre-trained models is highly
correlated with the final performance after the fine-tuning.

F More Qualitative Analysis

Pseudo-boundaries We compare the quality of discovered pseudo-boundaries
with the ground truth scene boundaries in Fig. 2. In most cases, we observe
the pseudo-boundaries identified by the DTW algorithm are successfully located
in close distance with the ground truth ones. This result validates our idea
considering the problem of discovering pseudo-boundary as a temporal alignment
problem between two sequences with different frequencies (S,, and S51°%). At the
same time, we illustrate the failure cases. Although discovered pseudo-boundary
does not match the ground truth in this case, we figure the determined boundary
is not always arbitrary. For example, the mismatch is often caused by the noise
existing in the ground truth (see the first row in the failure cases). On the other
hand, in case all shots are visually similar (see the third row in the failure cases),
the DTW solely relying on the visual modality fails to find the correct boundary.

Predicted scene boundaries The Fig. 3 illustrates the scene boundary pre-
dictions of different models. Comparing with the baselines, we observe that our
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Fig. 2. Comparison between the ground truth scene boundaries and the discovered
pseudo-boundaries based on the DTW algorithm. The examples are sampled from the
MovieNet-SSeg dataset. All boundary shots are highlighted in red.

approach, BaSSL, shows qualitatively better result for video scene segmentation.
On the other hand, we observe the over-segmentation issue in many cases using
any competing methods (including ours). Our finding implies that achieving the
highest recall only does not guarantee the highest performance in practice. We
reckon that further studies on this over-segmentation problem would be a highly
important topic when it comes to real-world application.
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Fig. 3. Comparison of boundary detection results from three pre-training approaches:
ImageNet pre-trained ResNet, ShotCoL, and BaSSL. The first row shows the reference
that is composed of two adjacent scenes divided by the ground truth boundary. We
visualize the shots that are assigned to the same scene segments with the same colored
border.



