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1 Overview

This supplementary material includes behavior analysis, ablation studies, limi-
tations, visualizations, and future direction of our proposed PU-Transformer for
point cloud upsampling.

2 Behavior Analysis

2.1 Positional Fusion Block

Although our Positional Fusion block utilizes similar operations as the Local
Context Fusion (LCF) block proposed in [1], there are three main differences
between these two methods. First, our block operates on the patches of point
clouds that have explicit borders, while the LCF extracts the local context from
a whole point cloud where more outliers could be involved. Second, all of our
blocks in PU-Transformer share the same geometric relations, but each LCF
block requires a distinct geometric relation that is specified in the corresponding
point cloud resolution. Last but not least, our block serves as a feature encoding
block that helps to gradually expand the channel dimension of the point cloud
feature map, while the LCF aims to refine the feature representations in the
same embedding space of the input.

We also investigate the embedding design in the Positional Fusion block as
shown in Table 1. Coupled with models A1-A3 in the main paper’s Tab. 3, our
embedding method (i.e., Eq. 5 in the main paper) is verified to learn better local
feature representations than DGCNN’s approach (i.e., “D2” in Table 1).

In addition, the effects of our Positional Fusion block can be analyzed from
the comparisons in Figure 1: by applying our proposed block, the generated
points can better align with the contour of a point cloud object, retaining high-
fidelity local detail with fewer outliers.
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Table 1: Ablation study of the Positional Fusion block’s embedding design. ∆P: Eq. 1
in the main paper; ∆F : Eq. 3 in the main paper (i.e., “EdgeConv” in DGCNN [2]).

models
Embedding Design Results (×10−3)

Ggeo Gfeat CD ↓ HD ↓ P2F ↓
D1 ∆P None 0.524 6.129 1.961
D2 None ∆F 0.633 5.331 2.252
D3 ∆P ∆F 0.480 5.172 1.602

Ours concat
[
dup
k

(P);∆P
]

concat
[
dup
k

(F);∆F
]
0.451 3.843 1.277

(a) PU-Transformer w/o the Positional Fusion block

(b) PU-Transformer with the Positional Fusion block

Fig. 1: Upsampling results of the PU-Transformer with and without using the Positional
Fusion block.
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2.2 SC-MSA Block

In Sec. 3.3 of the main paper, we state that it is easier for our SC-MSA block to
integrate the information between the connected multi-head outputs compared
to regular multi-head self-attention (MSA) [3]. The main reason can be explained
as follows: since two consecutive heads share some input channels, both of the
two heads’ outputs are affected/regulated by such shared channel-wise informa-
tion, leading to less varying estimations of point-wise dependencies. As any two
consecutive heads in our SC-MSA will follow the above manner, the outputs of
all connected multi-heads become less varying, benefiting the overall estimations
of point-wise dependencies.

To further compare regular MSA and our SC-MSA, we test their perfor-
mances given different numbers of transformer encoders:

Table 2: Performances of the PU-Transformer with different numbers of Transformer
Encoder. All metric units are 10−3.

# Transformers Attn Type # Parameters CD ↓ HD ↓ P2F ↓ Total Changes

L = 3
MSA 385.4k 0.534 4.664 1.696 ↓ 0.964

SC-MSA 438.3k 0.487 4.081 1.362

L = 4
MSA 482.0k 0.506 4.447 1.545 ↓ 0.732

SC-MSA 547.3k 0.472 4.010 1.284

L = 5
MSA 855.5k 0.498 4.218 1.427 ↓ 0.572

SC-MSA 969.9k 0.451 3.843 1.277

In the above Table 2, we observe that SC-MSA’s gain is more significant in
a lighter PU-Transformer model (i.e., with fewer Transformer Encoders), while
the parameter increase is affordable. Moreover, there is practical evidence to
support our argument: as the evaluation curves plotted in Figure 2, we clearly
observe that our SC-MSA assists faster convergence and better performance on
the test set than the regular MSA method.

3 Ablation Studies

3.1 Normalization Operations

As indicated in Fig. 2 and Alg. 1 of the main paper, the Transformer Encoder in-
corporates two normalization operations in the fashion of transformers. In prac-
tice, NLP-related models favor layer normalization (LN) [4] while image-related
methods prefer batch normalization (BN) [5]. In terms of the point cloud up-
sampling task, we select the type of normalization operations (i.e., “Norm1” and
“Norm2” in Table 3) in the PU-Transformer based on the practical performance.
Table 3 shows the quantitative results of five possible options (D1 to D5), indi-
cating that the two normalization operations are crucial while the effects of BN
and LN are very similar. Considering the relative simplicity and effectiveness,
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Fig. 2: The evaluation results of using SC-MSA or MSA [3] in the PU-Transformer body,
respectively. Overall, compared to regular MSA method, our SC-MSA contributes to
a better convergence and testing performance.

we thus adopt the LN operation for both “Norm1” and “Norm2” (i.e., model
D5), in order to further regulate the point features encoded by our Positional
Fusion and SC-MSA blocks.

3.2 PU1K and PU-GAN Datasets

Different from some works [7,8,9] testing their proposed models using their own
data, we quantitatively evaluate the PU-Transformer on two public datasets:
PU1K [6] and PU-GAN [10]. Particularly, we utilize the same experimental set-
tings and results from PU-GCN [6] and Dis-PU [11], in order to have a fair com-
parison with state-of-the-art methods in Tab. 1 and 2 of the main paper. More-
over, we investigate the difference between the PU1K and PU-GAN datasets
by swapping their training and testing data. According to the results (E1&E2,
E3&E4) in Table 4, we find that given a small scale of training data3, our PU-
Transformer can still achieve a similar performance when using a large scale of
training data4. In addition, as shown between E1&E3 or E2&E4, the test set of
PU1K is more challenging than the PU-GAN ’s, since there are 100 more testing
samples in the PU1K dataset.

324,000 samples in the PU-GAN dataset
469,000 samples in the PU1K dataset
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Table 3: PU-Transformer’s quantitative results of using different normalization oper-
ations in the Transformer Encoder, tested on the PU1K dataset [6]. The best results
are denoted in bold. (“Norm1”: the operation applied in step 4 of Alg. 1; “Norm2”:
the operation applied in step 5 of Alg. 1; “BN”: batch normalization [5]; “LN”: layer
normalization [4]; “CD”: Chamfer Distance; “HD”: Hausdorff Distance; “P2F”: Point-
to-Surface Distance.)

models Norm1 Norm2
CD↓ HD↓ P2F↓

(×10−3) (×10−3) (×10−3)

D1 none none 0.684 6.810 1.522
D2 BN BN 0.453 4.144 1.395
D3 BN LN 0.441 3.869 1.306
D4 LN BN 0.477 4.105 1.285

D5 LN LN 0.451 3.843 1.277

Table 4: PU-Transformer’s quantitative results when using different training and testing
data from PU1K dataset [6] and PU-GAN dataset [10]. (“CD”: Chamfer Distance;
“HD”: Hausdorff Distance; “P2F”: Point-to-Surface Distance.)

models
training testing CD↓ HD↓ P2F↓

data data (×10−3) (×10−3) (×10−3)

E1 PU1K PU1K 0.451 3.843 1.277
E2 PU-GAN PU1K 0.469 4.227 1.387

E3 PU1K PU-GAN 0.278 2.091 1.838
E4 PU-GAN PU-GAN 0.273 2.605 1.836
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3.3 Testing on PU-GAN’s Codebase

Our reported results in the main paper are testing on the codebase5 of PU-
GCN [6], which is also reported in Dis-PU [11] for a fair comparison. Moreover,
we have tested the performance of PU-Transformer on PU-GAN’s dataset and
the original evaluation method6, which are widely adopted in recent works. The
upsampling results are in Table 5:

Table 5: PU-Transformer’s quantitative results when using PU-GAN ’s dataset [10] and
evaluation method. (“CD”: Chamfer Distance; “HD”: Hausdorff Distance; “P2F”:
Point-to-Surface Distance; N/A: due to lack of ground truth points.)

Method 256 input points 2048 input points 4096 input points
(10−3) CD HD P2F CD HD P2F CD HD P2F

PU-GAN [10] 2.072 16.592 8.055 0.280 4.640 2.330 0.131 1.284 1.687
PU-EVA [12] 1.784 13.939 8.727 0.266 3.070 2.362 0.123 1.394 1.416

Ours 1.506 12.820 6.903 0.248 1.791 1.838 N/A N/A 1.249

4 Visualizations

4.1 Upsampling Noisy Input

In Tab. 4 of the main paper, we quantitatively compare the PU-Transformer’s ro-
bustness to random noise against other point cloud upsampling methods. More-
over, in Figure 3, we qualitatively visualize its upsampling results under different
noise levels. Generally, our approach is robust to random noise since the upsam-
pling results in all noisy cases retain the high-fidelity shapes. However, it is worth
noting that the generated point cloud’s uniformity can be affected as the noise
level increases.

4.2 Upsampling Different Input Sizes

In Figure 4, we provide more examples to visualize our PU-Transformer’s per-
formance on upsampling various sizes of point cloud data. Similar to the effects
shown in Fig. 5 of the main paper, given different numbers of input points, our
proposed model can always generate dense output of high-quality.

5https://github.com/guochengqian/PU-GCN
6https://github.com/liruihui/PU-GAN

https://github.com/guochengqian/PU-GCN
https://github.com/liruihui/PU-GAN
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4.3 Upsampling Real Point Clouds

We present a few examples of upsampling real point cloud data with our PU-
Transformer. Particularly, Figure 5 illustrates the upsampled results of a LiDAR
street [13], an indoor living room [14], a conference room [15], and some real-
scanned objects [16]. In general, the overall quality of input data is significantly
improved, where the generated points are well organized in a uniform distribu-
tion. For object instances (e.g., “cars”, and “chairs”), the representative features
have been enhanced, benefiting an easier visual recognition.

5 Applications of Point Cloud Upsampling

We expect the proposed point cloud upsampling methods to better reconstruct
semantic qualities benefiting downstream tasks such as classification [17,18], se-
mantic segmentation [19,20] and object detection [21,22]. To demonstrate the
feasiblity, we can make up a test by randomly selecting 256 (or 512) points from
each original sample in the test set of classification benchmarks (e.g., Model-
Net40 [23] or ScanObjectNN [16]), apply different 4× upsampling methods to
generate 1024 (or 2048) points, and finally test the classification results using a
same pretrained classification model (e.g., DGCNN [2]).
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(b) 𝛽 = 1%(a) 𝛽 = 0.5% (c) 𝛽 = 1.5% (d) 𝛽 = 2%

Fig. 3: Visualizations of PU-Transformer in upsampling noisy input point clouds, where
the noise is generated from a standard normal distribution N (0, 1) and multiplied with
a factor β = 0.5%, 1%, 1.5%, and 2%, respectively. The input point clouds are in orange
color, while the corresponding upsampled results are in blue.
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(a) Input = 256 (b) Input = 512 (c) Input = 1024 (d) Input = 2048

Fig. 4: Visualizations of PU-Transformer in upsampling different sizes of point clouds,
where the number of input points is 256, 512, 1024, and 2048, respectively. The input
point clouds are in orange color, while the corresponding upsampled results are in blue.
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Fig. 5: Visualizations of PU-Transformer in upsampling real point clouds, including
a LiDAR street (from SemanticKTTI dataset [13]), a living room (from ScanNet
dataset [14]), a conference room (from S3DIS dataset [15]), as well as some real-scanned
objects (from ScanObjectNN dataset [16]). The input point clouds are in orange color,
while the corresponding upsampled results are in blue.
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