
Inverting Adversarially Robust Networks for Image Synthesis 19

Appendix for:
Inverting Adversarially Robust Networks

for Image Synthesis

The appendix is organized as follows:
– In Sec. A1, we present a third application, GAN-based One-vs-All anomaly

detection using AR features, and show its benefits over standard techniques.
– In Sec. A2, we provide additional experimental results on feature inversion.
– In Sec. A3, we provide additional experimental results on downstream tasks.
– In Sec. A4, we provide implementation and experimental setup details.

A1 Anomaly Detection using AR Representations

A1.1 Approach

One-vs-All anomaly detection is the task of identifying samples that do not fit
an expected pattern [13,12,66,67]. Given an unlabeled image dataset with nor-
mal (positives) and anomalous instances (negatives), the goal is to distinguish
between them. Following GAN-based techniques [12], we train our proposed AR
AlexNet autoencoder exclusively on positives to learn a how to accurately recon-
struct them. Once trained on such a target distribution, we use its reconstruction
accuracy to detect negatives.

Given an unlabeled sample x and its AR features f , we search for f̂ that yields
the best reconstruction x̂ = Gφ̃(f̂) based on the following criterion (Fig. A1):

f̂ = arg min
f

αpix‖Gφ̃(f)− x‖1 + αfeat‖Fθ̃ ◦Gφ̃(f)− Fθ̃(x)‖22, (8)

where αpix, αfeat ∈ R++ are hyperparameters. Essentially, x is associated to

f̂ that minimizes pixel and feature losses between estimated and target repre-
sentations. Since Gφ̃ has been trained on the distribution of positive samples,
latent codes of negative samples generate abnormal reconstructions, revealing
anomalous instances.

A1.2 Experiments

We hypothesize that our AR generator widens the reconstruction gap between
in and out-of-distribution samples, improving its performance on anomaly de-
tection. Given a labeled dataset, our generator is trained to invert AR features
from samples of a single class (positives). Then, we evaluate how accurately sam-
ples from the rest of classes (negatives) are distinguished from positives on an
unlabeled test set.



20 R. A. Rojas-Gomez et al.

(a) Reconstruction-based Anomaly Score (b) One-vs-All Anomaly Detection

Fig. A1: Anomaly Detection using adversarially robust features.

Experimental Setup. We compare our technique using AR and standard
features against ADGAN [12,13].We evaluate the performance on CIFAR10 and
Cats vs. Dogs [68] datasets, where AUROC is computed on their full test sets.

Standard and AR encoders are fully-trained on ImageNet using the parame-
ters described in Sec. A2. By freezing the encoder, generators are trained using
pixel and feature losses on positives from the dataset of interest, CIFAR10 or
Cats vs. Dogs. Input images are rescaled to 224 × 224 px. before being passed
to the model, no additional data augmentation is applied during the generator
training. The regularization parameters for both standard and AR autoencoders
are heuristically selected as:

– Standard autoencoder: λpix = 2× 10−3, λfeat = 1× 10−2.

– AR autoencoder: λpix = 2× 10−6, λfeat = 1× 10−2.

Iterative Optimization Details. After training the generator on a partic-
ular class of interest, the optimal latent code f̂ associated to an arbitrary target
image x is obtained via stochastic gradient descent. For both standard and AR
autoencoders, the optimization criteria are identical to that used during the
generator training. Specifically, we minimize pixel and feature loss components
using the following hyperparameters:

– Standard autoencoder: αpix = 2× 10−3, αfeat = 1× 10−2.

– AR autoencoder: αpix = 2× 10−6, αfeat = 1× 10−2.

Detection is performed by solving Eq. (8), where f ∈ R6×6×256 is initialized
as white Gaussian noise and optimized for imax = 100 iterations. The initial
learn rate is chosen as 0.1 and linearly decreases along iterations down to 0.001.

Results. Full one-vs-all anomaly detection results for CIFAR-10 and Cats
vs. Dogs datasets are shown in Tab. A1. On average, our AR model improves
on outlier detection over its standard version and ADGAN. Our AR model gets
6.51% and 8.84% relative AUROC improvement over ADGAN on CIFAR-10
and Cats vs. Dogs, respectively. This shows our generator better distinguishes
positives and negatives due to its improved reconstruction accuracy.



Inverting Adversarially Robust Networks for Image Synthesis 21

Dataset
Positive

Class
ADGAN

[12]
Proposed

(Standard)
Proposed

(AR)

CIFAR-10

0 0.649 0.6874 0.6533
1 0.39 0.3498 0.3755
2 0.652 0.6756 0.662
3 0.481 0.5708 0.6123
4 0.735 0.751 0.7538
5 0.476 0.5101 0.5278
6 0.623 0.6895 0.7113
7 0.487 0.4773 0.4526
8 0.66 0.7232 0.7008
9 0.378 0.362 0.4408

Average 0.553 0.5797 0.589

Cats vs. Dogs
0 0.507 0.663 0.649
1 0.481 0.392 0.427

Average 0.494 0.527 0.538

Table A1: AUROC of our proposed one-versus-all anomaly detection method
for each class. Detection evaluated on CIFAR-10 and Cats vs. Dogs datasets.
Best results highlighted in black.

A2 Additional Experiments on Feature Inversion

A2.1 Ablation Study

Feature inversion results obtained using different optimization criteria are illus-
trated in Fig. A2. Results clearly show the effect of each term, `1 pixel, feature
and GAN components, in the final reconstruction. Samples correspond to the
ImageNet validation set. Particularly, when inverting features using pixel and
feature losses, adversarially robust features show a significant improvement with
respect to their standard counterparts. This agrees with the idea of adversarially
robust features being perceptually aligned.

A2.2 Robustness to Scale Changes

Inversion accuracy on upscaled low-resolution images is illustrated in Fig. A3
for scale factors L ∈ {1, . . . , 10}. While standard inversions show significant dis-
tortions for large upscaling factors L, reconstructions from adversarially robust
representations show almost perfect reconstruction for high upscaling factors.
Quantitative results are included in Tab. A2. Results improve almost monotoni-
cally when inverting AR representations, even without exposing the Autoencoder
to high-resolution images during training and without any fine-tuning.

On the other hand, extended results on feature inversion from high-resolution
images are illustrated in Fig. A4. Notice that, in contrast to the previous case,
input samples correspond to natural high-resolution images and are encoded
without any scaling. Results show a good color and edge preservation from our
AR autoencoder, while inverting standard features show bogus components and
noticeable color distortions.



22 R. A. Rojas-Gomez et al.

(a) Ground-truth images.

(b) Inverting standard (top) and AR (bottom) features using pixel losses.

(c) Inverting standard (top) and AR (bottom) features using pixel and feature losses.

(d) Inverting standard (top) and AR (bottom) features using pixel, feature and GAN
losses.

Fig. A2: CNN-based feature inversion of standard and AR representations.
AlexNet Conv5 standard (top) and AR (bottom) features are inverted using
an image generator trained on (a) `1 Pixel loss, (b) Pixel and feature losses, and
(c) Pixel, feature and GAN losses.

A2.3 ResNet-18: Robustness Level vs. Reconstruction Accuracy

We take the ResNet-18 model trained on CIFAR-10 from the Robustness library
[69], invert its third residual block (4 × 4 × 512) based on our approach using
pixel and feature losses, and evaluate its reconstruction accuracy for standard
and AR cases.

We measure the reconstruction accuracy for different robustness levels by
training six AR classifiers via `2 PGD attacks (Madry et al.) with attack radii
ε covering from 0 to 3.5 (see Tab. A3). Accuracy for each model is measured in
terms of PSNR, SSIM and LPIPS. We also report the robustness obtained by
each model against `2 PGD attacks.

Results show the best accuracy is reached for ε = 1.5 in terms of PSNR and
for ε = 1 in terms of SSIM and LPIPS. Quality increases almost monotonically
for models with low robustness and reaches a peak of approximately 19.62 dB



Inverting Adversarially Robust Networks for Image Synthesis 23

G. truth L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10

Fig. A3: Reconstructing upscaled images. Upscaled ImageNet samples are in-
verted from their standard and AR representations. While standard representa-
tions (top row) are severely degraded, AR representations (bottom row) show
an outstanding accuracy that improves with the scaling factor.

PSNR. Models with higher robustness slowly decrease in accuracy, yet obtaining
a significant boost over the standard model (ε = 0).

A2.4 Comparison Against Alternative Methods

Feature inversion accuracy obtained by our proposed model is compared against
DeePSiM [19] and RI [23] methods. Fig. A5 illustrates the reconstruction accu-
racy obtained by each method. As previously explained, our generator yields pho-
torealistic results with 37% the trainable parameters required by the DeePSiM
generator. Qualitatively, the color distribution obtained by our AR autoencoder
is closer to that obtained by DeepSiM. Specifically, without any postprocessing,
DeePSiM’s results show severe edge distortions, while out method shows minor
edge distortions. On the other hand, the optimization based approach from RI
introduces several artifacts, despite its use of robust representations. In con-
trast, our method takes advantage of AR features and minimizes the distortions
in a much more efficient manner by replacing the iterative process by a feature
inverter (image generator).



24 R. A. Rojas-Gomez et al.

L
Standard AlexNet Robust AlexNet

PSNR (dB)↑ SSIM↑ LPIPS↓ PSNR (dB)↑ SSIM↑ LPIPS↓
1 (224× 224) 15.057 0.3067 0.5473 17.2273 0.3580 0.5665

2 (448× 448) 16.2777 0.4068 0.4234 20.3554 0.4859 0.469

3 (672× 672) 16.0668 0.4317 0.4143 21.3696 0.5265 0.4376

4 (896× 896) 15.4258 0.4655 0.4136 22.575 0.5892 0.4012

5 (1120× 1120) 14.9726 0.4753 0.4235 22.9861 0.6074 0.4018

6 (1344× 1344) 14.3093 0.4887 0.4358 23.4824 0.6527 0.383

7 (1568× 1568) 13.8922 0.4852 0.4587 23.5778 0.6588 0.3898

8 (1792× 1792) 13.4781 0.4967 0.4656 23.7604 0.70178 0.3638

9 (2016× 2016) 13.2869 0.4882 0.4834 23.7907 0.6924 0.3906

10 (2240× 2240) 13.1013 0.4969 0.486 23.9566 0.7244 0.3892

Table A2: Reconstructing upscaled images (L ∈ {1, . . . , 10}). Upscaled 224×224
ImageNet samples are reconstructed from standard and AR AlexNet features,
the latter predominantly obtaining higher accuracy.

Architecture details and training parameters used to train out proposed
model are included in Sec. A4.1. DeePSiM results were obtained using its of-
ficial Caffe implementation. RI results were obtained using its official PyTorch
implementation, modified to invert AlexNet conv5 layer.

A3 Additional Results on Downstream Tasks

A3.1 Style Transfer

Fig. A6 shows additional stylization results obtained via the Universal Style
Transfer algorithm using standard and AR AlexNet autoencoders. Qualitatively,
the multi-level stylization approach used in our experiments show that AR repre-
sentations allow a good texture transferring while better preserving the content
image structure. Regardless the type of scene being stylized (e.g . landscapes,
portraits or single objects), aligning AR robust features allows to preserve sharp
edges and alleviates the distortions generated by aligning standard features. Ar-

`2 PGD Attack (ε)
0 0.5 1 1.5 2 2.5 3 3.5

Standard Accuracy 94.93 88.28 81.07 72.47 64.48 64.17 56.77 53.8

`2 PGD Attack
28.29

(ε = 0.25)
68.75

(ε = 0.5)
52.24

(ε = 1.0)
41.29

(ε = 1.5)
34.45

(ε = 2.0)
29.63

(ε = 2.5)
25.58

(ε = 3.0)
23.48

(ε = 3.5)

PSNR (dB) ↑ 14.7259 18.5161 19.2427 19.6278 19.5234 18.7568 19.3713 19.4376
SSIM ↑ 0.2958 0.5179 0.5399 0.5332 0.5265 0.4878 0.501 0.4951
LPIPS ↓ 0.6305 0.5024 0.4832 0.4905 0.5019 0.5312 0.5172 0.5321

Table A3: Reconstruction vs. Robustness. ResNet-18 experiments on CIFAR-
10 show that learning to invert contracted features with different AR levels
significantly affects the reconstruction accuracy.



Inverting Adversarially Robust Networks for Image Synthesis 25

Ground-truth Standard AR (ours) Ground-truth Standard AR (ours)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. A4: At a resolution of 2040×1536, 10 times higher than the training resolu-
tion, standard reconstructions show color and structure degradation. In contrast,
reconstructions from our AR autoencoder do not suffer from such distortions and
are closer to target DIV2K images.

chitecture details and training parameters for the style transfer experiments are
covered in Sec. A4.2.

A3.2 Image Denoising

Fig. A7 shows additional denoising results using our standard and AR autoen-
coders for the CBSDS68, Kodak24 and McMaster datasets. As previously dis-
cussed, we leverage the low-level feature representations by adding skip con-
nections to our proposed autoencoder. Low-level features complement the con-
tracted feature map obtained from AlexNet conv5, improving the detail preser-
vation. This is observed in the results, both with standard and AR autoencoders.

On the other hand, despite the effect of using skip connections, reconstruc-
tions from AR representations show a notorious improvement with respect to
standard reconstructions. Specifically, by combining skip connections with the
rich information already encapsulated in robust representations, results on all
three datasets show a substantial denoising improvement.



26 R. A. Rojas-Gomez et al.

(a) Ground-truth images.

(b) DeePSiM inversion results [19].

(c) RI results [23].

(d) Standard autoencoder.

(e) Robust autoencoder (ours).

Fig. A5: Feature inversion accuracy contrast between our proposed model and
alternative inversion methods.

A4 Implementation Details

A4.1 Architecture and Training Details

Encoder. For all downstream tasks, our adversarially robust AlexNet classifier
was trained using PGD attacks [22]. The process was performed on ImageNet
using stochastic gradient descent. The AR training parameters are as follows:

– Perturbation constraint: `2 ball with ε = 3
– PGD attack steps: 7
– Step size: 0.5
– Training epochs: 90

On the other hand, the standard AlexNet classifier was trained using cross-
entropy loss as optimization criteria. For both cases, the training parameters
were the following:

– Initial learning rate: 0.1
– Optimizer: Learn rate divided by a factor of 10 every 30 epochs.
– Batch size: 256

Tested under AutoAttack (`2, ε = 3), our AR AlexNet obtains a 18.7% top-1
robust accuracy, while our standard AlexNet classifier obtains a 0% top-1 robust
accuracy.



Inverting Adversarially Robust Networks for Image Synthesis 27

Refs Standard AR (ours) Refs Standard AR (ours)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. A6: Style transfer results using standard and robust AlexNet representa-
tions. Stylization obtained using the universal style transfer algorithm [2].

AR training was performed using the Robustness library [69] on four Tesla
V100 GPUs. Additional details about the model architecture and training pa-
rameters used for each experiment and downstream task are as follows.

Feature Inversion Experiments. A fully convolutional architecture is
used for the decoder or image generator. Tab. A4 describes the decoder ar-
chitecture used to invert both standard and AR representations, where conv2d

denotes a 2D convolutional layer, tconv2d a 2D transposed convolutional layer,
BN batch normalization, ReLU the rectified linear unit operator and tanh the
hyperbolic tangent operator.

Tab. A5 shows the discriminator architecture, where leakyReLU corresponds
to the leaky rectified linear unit, linear to a fully-connected layer, apooling to
average pooling and sigmoid to the Sigmoid operator. Motivated by the architec-
ture proposed by Dosovitskiy & Brox [19], the discriminator takes as input both



28 R. A. Rojas-Gomez et al.

Layer Layer Type
Kernel

Size
Bias Stride Pad

Input
Size

Output
Size

Input
Channels

Output
Channels

1a conv2d + BN + ReLU 3× 3 7 1 1 6× 6 6× 6 256 256

2a tconv2d + BN + ReLU 4× 4 7 1 1 6× 6 7× 7 256 256
2b conv2d + BN + ReLU 3× 3 7 1 1 7× 7 7× 7 256 256

3a tconv2d + BN + ReLU 4× 4 7 2 1 7× 7 14× 14 256 256
3b conv2d + BN + ReLU 3× 3 7 1 1 14× 14 14× 14 256 256

4a tconv2d + BN + ReLU 4× 4 7 2 1 14× 14 28× 28 256 256
4b conv2d + BN + ReLU 3× 3 7 1 1 28× 28 28× 28 256 128

5a tconv2d + BN + ReLU 4× 4 7 2 1 28× 28 56× 56 128 128
5b conv2d + BN + ReLU 3× 3 7 1 1 56× 56 56× 56 128 64

6a tconv2d + BN + ReLU 4× 4 7 2 1 56× 56 112× 112 64 64
6b conv2d + BN + ReLU 3× 3 7 1 1 112× 112 112× 112 64 32

7a tconv2d + BN + ReLU 4× 4 7 2 1 112× 112 224× 224 32 32
7b conv2d + BN + ReLU 3× 3 7 1 1 224× 224 224× 224 32 3
7c conv2d + tanh 3× 3 3 1 1 224× 224 224× 224 3 3

Table A4: Generator architecture used for feature inversion.

a real or fake image and its target conv5 feature map to compute the probability
of the sample being real. Fig. A8 shows the discriminator architecture.

Standard and AR autoencoders were trained on ImageNet using `1 pixel,
feature and GAN losses using ADAM. In both cases, all convolutional and
transposed convolutional layers are regularized using spectral normalization [70].
Training was performed using Pytorch-only code on two Tesla V100 GPUs.

The loss weights and training setup for both standard and AR cases corre-
spond to:

– Generator weights: λpix = 2× 10−6, λfeat = 1× 10−2, λGAN = 100

– Discriminator weight: λdisc = 2× 10−6

– Training epochs: 90

– Generator initial learning rate: 3× 10−4 (divided by a factor of 10 every 30
epochs).

– Discriminator initial learning rate: 12×10−4 (divided by a factor of 10 every
30 epochs).

– LeakyReLU factor: 0.2

– ADAM β ∈ [0, 0.9]

– Batch size: 128

A4.2 Style Transfer

While, for standard and AR scenarios, the autoencoder associated to conv5 cor-
responds to the model described in Sec. A4.1, those associated to conv1 and
conv2 use Nearest neighbor interpolation instead of transposed convolution lay-
ers to improve the reconstruction accuracy and to avoid the checkerboard effect
generated by transposed convolutional layers. Tab. A6, and Tab. A7 describe
their architecture details.



Inverting Adversarially Robust Networks for Image Synthesis 29

Layer Layer Type
Kernel

Size
Bias Stride Pad

Input
Size

Output
Size

Input
Channels

Output
Channels

Feature Extractor 1 (D1)

1a conv2d + ReLU 3× 3 3 4 1 256× 256 56× 56 3 32

2a conv2d + ReLU 5× 5 3 1 1 56× 56 52× 52 32 64
2b conv2d + ReLU 3× 3 3 2 1 52× 52 23× 23 64 128

3a conv2d + ReLU 3× 3 3 1 1 23× 23 21× 21 128 256
3b conv2d + ReLU 3× 3 3 2 1 21× 21 11× 11 256 256

4 ave. pooling 11× 11 − − − 11× 11 1× 1 256 256

Classifier 1 (D2)

4a Linear + ReLU − 3 − 1 9216 1024 − −
4b Linear + ReLU − 3 − 1 1024 512 − −

Classifier 2 (D3)

5a Linear + ReLU − 3 − 1 768 512 − −
5b Linear + Sigmoid − 3 − 1 512 1 − −

Table A5: Discriminator architecture used for feature inversion.

Layer Layer Type
Kernel

Size
Bias Stride Pad

Input
Size

Output
Size

Input
Channels

Output
Channels

1a conv2d + BN + ReLU 3× 3 7 1 1 27× 27 27× 27 64 64

2a tconv2d + BN + ReLU 4× 4 7 1 1 27× 27 28× 28 64 64
2b conv2d + BN + ReLU 3× 3 7 1 1 28× 28 28× 28 64 64

3a NN interpolation − − 2 − 28× 28 56× 56 64 64
3b conv2d + BN + ReLU 3× 3 7 1 1 56× 56 56× 56 64 64
3c conv2d + BN + ReLU 3× 3 7 1 1 56× 56 56× 56 64 32

4a NN interpolation − − 2 − 56× 56 112× 112 32 32
4b conv2d + BN + ReLU 3× 3 7 1 1 112× 112 112× 112 32 32

5a NN interpolation − − 2 − 112× 112 224× 224 32 32
5b conv2d + BN + ReLU 3× 3 7 1 1 224× 224 224× 224 32 16
5c conv2d + BN + ReLU 3× 3 7 1 1 224× 224 224× 224 16 3
5d conv2d + tanh 3× 3 3 1 1 224× 224 224× 224 3 3

Table A6: Conv1 generator architecture used for style transfer.

All generators were fully-trained on ImageNet using Pytorch-only code on
two Tesla V100 GPUs. The regularization parameters and training setup for
both cases are as follows:

– Standard generator weights: λpix = 2× 10−4, λfeat = 1× 10−2.

– AR generator weights: λpix = 2× 10−6, λfeat = 1× 10−2.

– Training epochs: 90.

– Generator initial learning rate: 3× 10−4 (divided by a factor of 10 every 30
epochs).

– ADAM β ∈ [0, 0.9].

– Batch size: 128.



30 R. A. Rojas-Gomez et al.

Layer Layer Type
Kernel

Size
Bias Stride Pad

Input
Size

Output
Size

Input
Channels

Output
Channels

1a conv2d + BN + ReLU 3× 3 7 1 1 13× 13 13× 13 192 192

2a tconv2d + BN + ReLU 4× 4 7 1 1 13× 13 14× 14 192 192
2b conv2d + BN + ReLU 3× 3 7 1 1 14× 14 14× 14 192 96

3a NN interpolation − − 2 − 14× 14 28× 28 96 96
3b conv2d + BN + ReLU 3× 3 7 1 1 28× 28 28× 28 96 96
3c conv2d + BN + ReLU 3× 3 7 1 1 28× 28 28× 28 96 64

4a NN interpolation − − 2 − 28× 28 56× 56 64 64
4b conv2d + BN + ReLU 3× 3 7 1 1 56× 56 56× 56 64 64

5a NN interpolation − − 2 − 56× 56 112× 112 64 64
5b conv2d + BN + ReLU 3× 3 7 1 1 112× 112 112× 112 64 64

6a NN interpolation − − 2 − 112× 112 224× 224 64 64
6b conv2d + BN + ReLU 3× 3 7 1 1 224× 224 224× 224 64 32
6c conv2d + BN + ReLU 3× 3 7 1 1 224× 224 224× 224 32 3
6d conv2d + tanh 3× 3 3 1 1 224× 224 224× 224 3 3

Table A7: Conv2 generator architecture used for style transfer.

A4.3 Image Denoising

Our image denoising model consists of standard and AR autoencoders equipped
with skip connections to better preserve image details. Fig. A9 illustrates the
proposed denoising model, where skip connections follow the Wavelet Pooling
approach [3]. Tab. A8 and Tab. A9 include additional encoder and decoder ar-
chitecture details, respectively.

Encoder pooling layers are replaced by Haar wavelet analysis operators, gen-
erating an approximation component, denoted as {wk,LL}, and three detail com-
ponents, denoted as {wk,LH, wk,HL, wk,HH}, where k corresponds to the pooling
level. While the approximation (low-frequency) component is passed to the next
encoding layer, details are skip-connected to their corresponding stages in the
decoder. Following this, transposed convolutional layers in the decoder are re-
placed by unpooling layers (Haar wavelet synthesis operators), reconstructing a
signal with well-preserved details at each level and improving reconstruction.

In contrast to the AlexNet architecture, all convolutional layers on the de-
coder use kernels of size 3 × 3. Also, given the striding factor of the first two
AlexNet convolutional layers, two additional interpolation layers of striding fac-
tor 2 are used to recover the original input size (224× 224).

Standard and AR robust generators were trained using exclusively `1 pixel
and feature losses. Training was performed on ImageNet using Pytorch-only code
on four Tesla V100 GPUs. Generator loss weights and training parameters for
both cases correspond to:
– Generator weights: λpix = 2× 10−6, λfeat = 1× 10−2.

– Training epochs: 90.

– Generator initial learning rate: 3× 10−4 (divided by a factor of 10 every 30
epochs).

– ADAM β ∈ [0, 0.9].

– Batch size: 128.



Inverting Adversarially Robust Networks for Image Synthesis 31

Layer Layer Type
Kernel

Size
Bias Stride Pad

Input
Size

Output
Size

Input
Channels

Output
Channels

1a conv2d + ReLU 11× 11 3 4 2 224× 224 55× 55 3 64

2a Wavelet pooling − − 2 − 55× 55 27× 27 64 64
2b conv2d + ReLU 5× 5 3 1 2 27× 27 27× 27 64 192

3a Wavelet pooling − − 2 − 27× 27 13× 13 192 192
3b conv2d + ReLU 3× 3 3 1 1 13× 13 13× 13 192 384
3c conv2d + ReLU 3× 3 3 1 1 13× 13 13× 13 384 256
3c conv2d + ReLU 3× 3 3 1 1 13× 13 13× 13 256 256

4a Wavelet pooling − − 2 − 13× 13 6× 6 256 256

Table A8: Encoder architecture used for image denoising.

Layer Type
Kernel

Size
Bias Stride Pad

Input
Size

Output
Size

Input
Channels

Output
Channels

1a conv2d + BN + ReLU 3× 3 7 1 1 6× 6 6× 6 256 256

2a Wavelet unpooling − − 2 − 6× 6 12× 12 256 256
2b conv2d + BN + ReLU 3× 3 7 1 1 12× 12 12× 12 256 256
2c Reflection padding − − − − 12× 12 13× 13 256 256
2d conv2d + BN + ReLU 3× 3 7 1 1 13× 13 13× 13 256 256
2e conv2d + BN + ReLU 3× 3 7 1 1 13× 13 13× 13 256 192

3a Wavelet unpooling − − 2 − 13× 13 26× 26 192 192
3b Reflection padding − − − − 26× 26 27× 27 192 192
3c conv2d + BN + ReLU 3× 3 7 1 1 27× 27 27× 27 192 128
3d conv2d + BN + ReLU 3× 3 7 1 1 27× 27 27× 27 128 64

4a Wavelet unpooling − − 2 − 27× 27 55× 55 64 64
4b Reflection padding − − − − 55× 55 56× 56 64 64
4c conv2d + BN + ReLU 3× 3 7 1 1 56× 56 56× 56 64 64

5a NN interpolation − − 2 − 56× 56 112× 112 64 64
5b conv2d + BN + ReLU 3× 3 7 1 1 112× 112 112× 112 64 32
5c conv2d + BN + ReLU 3× 3 7 1 1 112× 112 112× 112 32 32

6a NN interpolation − − 2 − 112× 112 224× 224 32 32
6b conv2d + BN + ReLU 3× 3 7 1 1 224× 224 224× 224 32 3
6c conv2d + BN + ReLU 3× 3 7 1 1 224× 224 224× 224 3 3
6d conv2d + tanh 3× 3 3 1 1 224× 224 224× 224 3 3

Table A9: Decoder architecture used for image denoising.



32 R. A. Rojas-Gomez et al.

Ground-truth Noisy Standard Robust

Fig. A7: Image denoising results using standard and AR encoders (AlexNet) from
the CBSD68 and Kodak24 sets. Samples corrupted by clipped white Gaussian
noise (σ = 50

255 ).



Inverting Adversarially Robust Networks for Image Synthesis 33

(a)

Fig. A8: Discriminator model.

(a) Skip connected AlexNet encoder

(b) Skip connected AlexNet decoder

Fig. A9: Proposed denoising autoencoder including skip connections.


