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Abstract. This is the supplementary material for “Robustizing Object
Detection Networks Using Augmented Feature Pooling.” We provide ad-
ditional experimental results, a pseudo-code for our algorithm and details
of our training protocols, and the details of datasets used in our experi-
ments.

1 Additional Results

In this section, we report additional results for (i) applicability to various back-
bones, (ii) comparison with data augmentation (DA) and test time augmentation
(TTA), and (iii) applicability to modern object detection architectures.

Applicability to Various Backbones (Sec. 5.2). We demonstrate the effec-
tiveness of our proposed method in terms of applicability to various backbones
in Sec. 5.2. Figure 1 shows additional visual comparisons. These results also sup-
port the superiority of the proposed method over vanilla, as in our main paper.
More example results by our proposed method are shown in Fig. 2. Our proposed
method successfully detects those objects containing various rotations3. Finally,
we explain whether more angles (e.g., 32 angles) in the rotation set to improve
the results even further. Our preliminary experiments using Faster-RCNN with
ResNet50 on COCO-Rot-val confirmed that the mAP at 32 and 16 angles are
the same (mAP=30.0). The mAP will saturate at least around 16 angles.

Comparison with DA and TTA (Sec. 5.2). To demonstrate the superiority
of our augmented feature pooling, we describe the performance of DA, TTA, and
our proposed method in Sec. 5.2 of our main paper. Table 3 also shows AP50 and
AP75 by our proposed framework, DA, and TTA. We can clearly see that our
proposed method has the highest AP50 and AP75 compared to DA and TTA, as
in our main paper.

3 Note that, in Fig. 2, eight images selected from the original COCO evaluation set,
i.e. val2017, are rotated with different rotation angles and combined into a single im-
age. Even though the single image contains different rotation with different rotation
angles for each object, our proposed method successfully detects each object.



2 T.Shibata et al.

(a) Vanilla (b) Ours

Fig. 1. More example results by our proposed method and vanilla using Faster-
RCNN [27] with Swin-Transformer [20]. In the results of vanilla, the green and the blue
arrows, i.e. ↖ and ↖, indicate false negatives and false positives, respectively. Con-
trary to vanilla backbone feature extraction, our proposed method can detect target
objects with accurate bounding boxes for various rotation angles.

Fig. 2. More example results by our proposed method. Note that eight images selected
from the original COCO evaluation set, i.e. val2017, are rotated with different rota-
tion angles and combined into a single image. Even though the single image contains
different rotation with different rotation angles for each object, our proposed method
successfully detects each object.
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Table 1. Performances of AP50 and AP75 on COCO-Rot-val by DA, TTA, and ours.
Bold and italic indicate the best and second best results for each column, respectively.
MS COCO-train and COCO-Rot-train are used as training data, respectively.

(a) Original MS COCO-train. (AP50)
Method AP50

Vanilla 26.2

+ TTA4 39.7 (+13.5)
+ DA4 39.3 (+13.1)
+ DA4+TTA4 39.5 (+13.3)

Ours16 37.3 (+11.1)
+ TTA4 44.1 (+17.9)
+ DA4 45.5 (+19.3)
+ DA4 + TTA4 45.0 (+18.8)

(b) COCO-Rot-train. (AP50)
Method AP50

Vanilla 41.0

+ TTA4 44.9 (+3.9)
+ DA4 41.0 ( 0.0)
+ DA4+TTA4 44.9 (+3.9)

+ Oracle DA4 41.0 ( 0.0)
+ Oracle DA4+TTA4 44.5 (+3.5)

Ours16 49.0 (+8.0)
+ TTA4 49.1 (+8.1)

(c) Original MS COCO-train. (AP75)
Method AP75

Vanilla 16.5

+ TTA4 26.4 (+9.9)
+ DA4 21.9 (+5.4)
+ DA4+TTA4 25.8 (+9.3)

Ours16 21.6 (+5.1)
+ TTA4 27.6 (+11.1)
+ DA4 27.9 (+11.4)
+ DA4 + TTA4 27.9 (+11.4)

(d) COCO-Rot-train. (AP75)
Method AP75

Vanilla 25.7

+ TTA4 29.3 (+3.6)
+ DA4 25.9 (+0.2)
+ DA4+TTA4 29.3 (+3.6)

+ Oracle DA4 25.9 (+0.2)
+ Oracle DA4+TTA4 29.7 (+4.0)

Ours16 31.8 ( +6.1)
+ TTA4 31.8 ( +6.1)

Applicability to Modern Object Detection Architectures (Sec. 5.3).
We demonstrate the versatility of our proposed method on various object detec-
tion networks in Sec. 5.3. Table 2 also shows AP50 and AP75 of our proposed
framework, vanilla with DA4, our proposed framework with TTA4 and vanilla
with TTA4, respectively. Note that the performances of mAP are shown in Ta-
ble 3 in our main paper. Our proposed method substantially improves AP50 and
AP75 for all the detection architectures than DA and TTA.

2 Details of Training Protcols and Datasets

Training Protocols Details and Implementation Details (Sec. 5.1). We
describe the details of the training protocols in our experiments. We implemented
our code based on MMDetection [4] with PyTorch [23]. We used the default train-
ing protocol in MMDetection [4]. The training schedule is 1x4. More precisely,
we used the SGD optimizer, set the batch size to 16. An initial learning rate,
momentum, weight decay are 0.02, 0.9, 10−4, respectively. We trained detectors
for 12 epochs with the learning rate decreased by 10x at epoch 8 and 11. We
only used random flip for data augmentation. Note that, only for Deformable
DETR [35], we used Adam optimizer as in [35], used random flip and auto aug-
mentation [6] for data augmentation, trained detectors for 50 epochs. An initial
learning rate and weight decay are 2.0× 10−4, 1.0×−4, respectively.

4 In our experiment shown in Table 2 (a) of our main paper, the training schedule is
5x as in [13] for a fair comparison.
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Table 2. Overall performance of AP50 and AP75 on COCO-Rot-val by our method
and DA and TTA with various object detection networks. Bold and italic indicate the
most and next most accurate methods, respectively.

(a) Performance of AP50 by ours and DA with various object detection networks.

Baseline Backbone/Neck Vanilla Vanilla+DA4 Ours16

Faster-RCNN [27] ResNet50 w/ FPN 41.0 41.0 ( 0.0 ) 49.0 (+8.0)
RetinaNet [16] ResNet50 w/ FPN 38.6 38.9 (+0.3) 46.9 (+8.3)

FSAF [34] ResNet50 w/ FPN 38.9 39.3 (+0.4) 47.8 (+8.9)
ATSS [32] ResNet50 w/ FPN 40.6 41.1 (+0.5) 48.8 (+8.2)

YOLOF [5] ResNet50 38.9 39.1 (+0.2) 45.4 (+6.5)
D-DETR (++ two-stage) [35] ResNet50 52.7 54.5 (+1.8) 58.2 (+5.5)

(b) Performance of AP75 by ours and DA with various object detection networks.

Baseline Backbone/Neck Vanilla Vanilla+DA4 Ours16

Faster-RCNN [27] ResNet50 w/ FPN 25.7 25.9 (+0.2) 31.8 (+6.1)
RetinaNet [16] ResNet50 w/ FPN 25.1 25.5 (+0.4) 31.4 (+6.3)

FSAF [34] ResNet50 w/ FPN 25.6 26.1 (+0.5) 31.5 (+5.9)
ATSS [32] ResNet50 w/ FPN 28.2 28.9 (+0.7) 34.9 (+6.7)

YOLOF [5] ResNet50 25.6 25.9 (+0.3) 29.3 (+3.7)
D-DETR (++ two-stage) [35] ResNet50 38.1 39.9 (+1.8) 42.3 (+4.2)

(c) Performance of AP50 by ours and TTA with various object detection networks.

Baseline Backbone/Neck Vanilla Vanilla+TTA4 Ours16

Faster-RCNN [27] ResNet50 w/ FPN 41.0 44.9 (+3.9) 49.1 (+8.1)
RetinaNet [16] ResNet50 w/ FPN 38.6 43.1 (+4.5) 48.2 (+9.6)

FSAF [34] ResNet50 w/ FPN 38.9 43.0 (+4.1) 48.2 (+9.3)
ATSS [32] ResNet50 w/ FPN 40.6 44.1 (+3.5) 48.7 (+8.1)

YOLOF [5] ResNet50 38.9 42.4 (+3.5) 45.5 (+6.6)
D-DETR (++ two-stage) [35] ResNet50 52.7 56.9 (+4.2) 59.3 (+6.6)

(d) Performance of AP75 by ours and TTA with various object detection networks.

Baseline Backbone/Neck Vanilla Vanilla+TTA4 Ours16

Faster-RCNN [27] ResNet50 w/ FPN 25.7 29.3 (+3.6) 31.8 (+6.1)
RetinaNet [16] ResNet50 w/ FPN 25.1 28.7 (+3.6) 31.1 (+6.0)

FSAF [34] ResNet50 w/ FPN 25.6 28.7 (+3.1) 31.3 (+5.7)
ATSS [32] ResNet50 w/ FPN 28.2 31.7 (+3.5) 34.5 (+6.3)

YOLOF [5] ResNet50 25.6 28.6 (+3.0) 29.6 (+4.0)
D-DETR (++ two-stage) [35] ResNet50 38.1 39.6 (+1.5) 41.3 (+3.2)

We also provide a pseudo-code of our augmented feature pooling in Algo-
rithm 1. As shown in the pseudo-code, we only add rotation, inverse rotation,
and feature pooling to the original forward function of the backbone. It requires
only a few lines of changes from the original implementation. Our code including
the augmented feature pooling will be available if this paper is accepted.

Datasets Details (Sec. 5.1). As described in Sec. 5.1, we constructed the new
datasets, called COCO-Rot-train and COCO-Rot-val, and evaluated the perfor-
mance of our augmented feature pooling. We implemented our code for gener-
ating the datasets based on PyTorch [23] and MMDetection [4]. To generate a
tight bounding box, we randomly rotated the annotated ground truth segmen-
tation mask with the same rotation angle as that of the image, fitted the tight
bounding box using this rotated mask. The rotation angle was determined by a
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Algorithm 1 Pytorch-like pseudo-code for our augmented feature pooling

# forward function in backbone
def forward (x0, Θ):

# x0,Θ : input image, rotation set

# x̂l : pooled feature map

X̃l
Θ = [ ] # define an empty array

for θ in Θ = {θ1, · · · θi}:
z0 = Rθ(x

0) # rotation

zl = F l ◦ · · · ◦ F 1 ◦ z0 # feature extraction

x̃l = R−θ(z
l) # inverse rotation

X̃l
Θ.append(x̃

l) # append feature map(
x̂l
)
k
= max

θ∈Θ

(
X̃l

Θ

)
k

# feature pooling

return x̂l

uniform random variable that ranges over all angles, i.e. 0 to 360 degrees. Our
COCO-Rot-train and COCO-Rot-val were generated from the original COCO
2017 training data and the original COCO 2017 validation data, respectively.

(a) Example images with tight bounding boxes of COCO-Rot-train

(b) Example images with tight bounding boxes of COCO-Rot-val

Fig. 3. Example images with tight bounding boxes of COCO-Rot. To generate a tight
bounding box, we randomly rotated the annotated ground truth segmentation mask
with the same rotation angle as that of the image, fitted the tight bounding box using
this rotated mask.

The numbers of images for COCO-Rot-train and COCO-Rot-val are 118K
and 5K, respectively. Figure 3 shows example images with the tight bounding
boxes of COCO-Rot-train and COCO-Rot-val, respectively.
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Table 3. Processing speed and FLOP for TTA and ours.

Flops ↓ [GFLOPs] Proc.speed ↑ [task/s]
# augmentation: ξ # augmentation: ξ

Method ξ = 4 ξ = 8 ξ = 16 ξ = 4 ξ = 8 ξ = 16

Vanilla 202 61.7
+ TTAξ 809 1618 3237 21.2 11.1 5.7

Oursξ
459 796 1468 24.5 14.2 7.8

(x0.57) (x0.49) (x0.45) (x1.15) (x1.27) (x1.36)

3 Computation complexity and time of the proposed
method

Our approach can be considered a new variation of TTAs already used in existing
networks. Our proposed method can be parallelized, and we think the computa-
tional time is reasonable. A comparison of FLOPs (measured at 1280× 800× 3
[pix]) and processing speed between the proposed method and baseline (TTA) is
shown in Table 1 below. NVIDIA A100 GPUs (four GPUs) were used for our ex-
periments. We used Faster-RCNN with ResNet50. We measured the processing
speed (tasks per second) on COCO-Rot-val. The proposed method is superior
in terms of FLOPs and processing time because our proposed method limits
multiple inferences to the backbone as well as detection accuracy. We will add
the table in our final version including supplemental material. Further compu-
tationally efficient networks are out-of-scope of this paper, while this is an issue
to be addressed in the future.

4 Short survey on modern object detection

In this section, we describe a short survey on modern object detection. Note that
various comprehensive survey are presented such as [17,36]. As described in our
main paper, the architectures of recent object detection consist of three compo-
nents: backbone, neck, and detection head. Based on the detection head’s archi-
tecture, the existing object detection algorithms can be classified into single-stage
detectors [5, 10, 16, 18, 24–26] and two-stage detectors [1, 3, 12, 21, 22, 27, 29, 30].
In the single-stage detector framework, the detector predicts class probabilities
and bounding box offsets from full images with a single feed-forward CNN. In
the two-stage detector framework, the region proposals are generated, and then
classifiers are used to determine the category labels of each proposal. In general,
single-stage detectors have the advantage of fast and efficient computation, while
two-stage detectors have the advantage of high detection accuracy.

While anchors are widely used, anchor-free approaches [15, 28, 32, 34] and
keypoint-based approaches [14, 33] have been proposed. The center of object as
foreground to define positives, and then predicts the distances from positives to
the four sides of the object bounding box for detection.

Beyond those CNN-based methods, Transformers have also been employed in
detection networks, combining a transformer-based architecture [2, 8, 35] with a
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CNN-based backbone [7,9,11,19,31] or using a transformer-based backbone [20].
The approach of using a transformer in the detection head [2] has the advantage
of not requiring post-processing such as NMS.
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