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1 Implementation

In this section, we report a further description of our implementation of our NAS-
based transformer. By replacing the multi-head attention module, we can derive
five different transformer structures: transformer with transposed attention [1]
(Tta), transformer with efficient channel attention [2] (Teca), transformer with
shuffle attention [3] (Tsa), transformer with spatial group-wise enhance attention
[4] (Tsge) and transformer with double attention [5] (Tda). Here, we present
their specific attention structure in Figure. 1. For more details, please read their
papers. Through these modules, the input with arbitrary resolutions can be
directly fed into the corresponding transformer and their scale of parameters is
small as well.

2 Extra experiments

We also evaluate our methods by different training setting: Ushape setting [6] and
RCTNet setting [7]. The biggest difference between these settings is the training
data. As for the Ushape setting, the networks are trained only on the training
set from the LSUI dataset. The RCTNet setting is to train the networks on
different datasets. That is to separately train the networks with the respective
training data from the datasets. As shown in Table. 1, our deep model can
achieve remarkable performance in different settings. Moreover, the performance
with Ushape setting is better. On one hand, it denotes that the LSUI dataset
is indeed a high-quality dataset, which can provide abundant scenes and diverse
objects for the training of data-driven models. On the other hand, the proposed
network is able to make the most of these data, thus extracting robust and
reliable features for enhancement.

We also present more visual results in Figure. 2. Moreover, we present some
failure cases, which cannot completely recover the original color or content by
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(a) The specific structure of the transposed
attention [1].
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(b) The specific structure of the efficient
channel attention [2].

Co
nv

Co
nv

Co
nv

𝐹 R

Co
nv

!𝐻× !𝑊× $𝐶

!𝐻 !𝑊× $𝐶

$𝐶×!𝐻 !𝑊

𝑄

𝐾

𝑉 !𝐻 !𝑊× $𝐶

$𝐶× $𝐶

𝐴tt𝑒𝑛𝑡𝑖𝑜𝑛 𝑚𝑎𝑝

!𝐻× !𝑊× $𝐶

𝐹 G

!𝐻× !𝑊× $𝐶

...

𝐺!"#

𝐺!

𝐺!$#

...

S
!𝐻× !𝑊×( $𝐶/𝑔)

𝐺!#

GA
P

FC

𝐺!%

GN FC

c CS

!𝐻× !𝑊× $𝐶

!𝐻× !𝑊×( $𝐶/2𝑔)

!𝐻× !𝑊×( $𝐶/2𝑔)

𝐹
!𝐻× !𝑊× $𝐶

GA
P

Co
nv 1D

!𝐻× !𝑊× $𝐶

R R

𝐹 G

!𝐻× !𝑊× $𝐶

...

𝐺!"#

𝐺!

𝐺!$#

GA
P

N
or
m

FC

!𝐻× !𝑊×( $𝐶/𝑔)

R

(c) The specific structure of the shuffle atten-
tion [3].
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(d) The specific structure of the spatial
group-wise enhance attention [4].
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(e) The specific structure of the double attention [5].
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(f) The specific structure of the deployed feed-forward function.

Fig. 1: The specific structures of different self-attention modules and feed-forward
function.
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Table 1: Quantitative results by using different training settings.

Training setting
UIEB LSUI EUVP

PSNR SSIM PSNR SSIM PSNR SSIM

Ushape setting [6] 25.45 0.9231 26.13 0.8608 29.56 0.8818
RCTNet setting [7] 22.82 0.9137 - - 26.59 0.8451

Input Ours GT Input Ours GT

Fig. 2: More Visual results on testing datasets.

the proposed approach. For example, in the fifth row of Figure. 2, we can see
the ground truth presents a red color style. Our enhanced images can recover
part of them but fail in the entire image. For these colorful marine lives, there
are few samples in the datasets. It is still difficult to capture the diverse color
information by using few training data.

In the Table. 2, we also report the runtime comparison. Among the recent
deep learning-based methods, the model size and runtime are competitive.

3 Application on underwater detection

In order to validate the supportive function of our enhancer, we use a detector
[13] to detect the underwater objects by using an original video and the corre-
sponding enhanced one. The qualitative results are shown in Figure. 3. As we
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Table 2: Runtime and model sizes of the deep learning-based methods
Method WaterNet [8] FUnIE [9] UGAN [10] UIE-DAL [11] Ucolor [12] Ushape [6] Ours

Param. 25M 7M 57M 19M 157M 66M 12M

Time 0.55s 0.02s 0.06s 0.04s 1.87s 0.04s 0.02s

Original

Enhanced

Original

Enhanced

Fig. 3: The supportive function of the the proposed enhancer for object detection
in underwater scenarios.

can see, the visual results of using the enhanced video are better than the origi-
nal inputs. As for the multiply objects in the video, not all of the objects can be
highlighted by the detector by using the original video. After the enhancement
by the proposed approach, the video frames turn clearer, which is very useful to
help the detector extract high-level features, thus generating accurate bounding
boxes of the objects. Moreover, our runtime is 0.02s per frame. It is a small
burden for the detector.
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