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A More pseudocode

This section describes the pseudo-code for the methods discussed in this paper.
The pseudo-code for Multi-scale Patch Embedding is detailed in Listing 1.1.

1 # b: size of mini -batch , h: height , w: width ,
2 # kernels: list of kernel sizes for unfold.
3 # e.g., [4, 8]
4

5 def __init__(self , in_channels , out_channels , kernels):
6 mlp_in_channels = 0
7 for k in kernels:
8 mlp_in_channels += k ** 2
9 mlp_in_channels *= in_channels

10 self.embeddings = nn.ModuleList ([
11 nn.Sequential (*[nn.Unfold(
12 kernel_size=k,
13 stride=self.stride ,
14 padding =(k - self.stride) // 2),
15 Rearrange("b c hw -> b hw c")
16 ]) for k in kernels
17 ])
18 self.fc = nn.Linear(
19 mlp_in_channels , out_channels
20 )
21

22 def forward(self , input):
23 b, _, h, w = input.shape
24 outputs = []
25 for emb in self.embeddings:
26 output = emb(input)
27 outputs.append(output)
28 return self.fc(torch.cat(outputs , dim =2))

Listing 1.1: Pseudocode of multi-scale patch embedding (Pytorch-like)
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B Downstream Task Application

In this section, we discuss the application of our model to fownstream tasks.
In order to apply our models to downstream tasks such as semantic segmenta-
tion, instance segmentation, and object detection, various resolutions need to be
supported. Therefore, we insert bicubic interpolation before and after the raft-
token-mixing block, as shown in Fig. 1. In the bicubic interpolation before the
block, we convert the input to the resolution used for pre-training. The bicubic
interpolation after the block restores the resolution before the first bicubic inter-
polation. Moreover, since the resolution of input images is not always divisible
by the patch size, we apply bicubic interpolation to obtain the resolution before
multi-scale embedding that is a factor of the patch size. This method can be
applied to other global MLP-based models such as MLP-Mixer too.
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Fig. 1: Application of RaftMLP block utilizing bicubic interpolation

B.1 Object Detetion

For the evaluation of object detection and instance segmentation, we compose
a model in which the backbones of RetinaNet [8] and Mask R-CNN [3], which are
both standard implementations on the object detection framework mmdetection [1],
are replaced by RaftMLP and MLP-Mixer. For the dataset, we used MS COCO [9],
which is one of the most popular benchmark datasets for object detection. The
training setup is similar to ConvMLP [6], with AdamW as the optimizer, learn-
ing rate set to 10−4, weight decay set to 10−4, and 12 epochs of training with a
batch size of 16. The results are compared with PureMLP [6], ResNet [4], and
ConvMLP [6], and a summary is provided in Fig. 2. See Appendix B.4 for more
details.

B.2 Semantic Segmentation

We replace the backbone of Semantic FPN [5] implemented on mmsegmention [2]
with RaftMLP and MLP-Mixer and evaluate their performances on the segmen-
tation task. We adopt AdamW as the optimizer with a learning rate of 2.0×10−4

and a weight decay of 10−4. The learning schedule follows the polynomial decay
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learning rate policy with a power of 0.9. We use the famous ADE20K dataset [11]
to train the model, with the input image randomly resized and cropped to a res-
olution of 512 × 512. The model had trained for 40000 iterations. The above
settings follow ConvMLP [6]. A summary of the experimental results is shown
in Fig. 2. See Appendix B.4 for more details.
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Fig. 2: The above compares the training results of RetinaNet and Mask R-CNN
on MS COCO and Semantic FPN on ADE20K. We compare the results with
ResNet, PureMLP, ConvMLP, Mixer, and RaftMLP as backbones in each case.
RetinaNet uses AP for bounding boxes, Mask R-CNN AP for bounding boxes
and segmentation, and Semantic FPN uses mIoU as their metric.
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B.3 Details of Architectures

RaftMLP The details of the architectures of RaftMLP-S, RaftMLP-M, and
RaftMLP-L used in this paper are details in Table 1.

Object Detection, Instance Segmentation and Semantic Segmentation For the
RetinaNet [8] and Mask R-CNN [3] and Semantic FPN [5] we used, we con-
sulted the results of [6], which is the same setup for ResNet, PureMLP, and
ConvMLP, which are our comparison. The backbones we have experimented
with are RaftMLP and Mixer-B/16. All of the architectures we have arranged
use Feature Pyramid Network [7]. Therefore, we must clearly state what fea-
ture pyramid was input to these architectures from the backbones RaftMLP
and Mixer-B/16. RaftMLP utilizes the output immediately after the first multi-
scale patch embedding and the outputs of Level-2 to Level-4 as feature maps
to be input to the detector and segmentor. Similarly, Mixer-B/16, along with
RaftMLP, uses the output immediately after the patch embedding and the out-
puts of Block-4, Block-10, and Block-12 as before-mentioned feature maps.

B.4 Details of Quantitative Results

Object Detection and Instance Segmentation Table 2 contains the detailed results
of the experiment for RetinaNet performed in Subsection B.1, Table 3 includes
the detailed results of the experiment for Mask R-CNN worked in Subsection B.1.
The results of RetinaNet are not doing as well overall as PureMLP, even with
RaftMLP, which guarantees some spatial structure. In particular, it struggles
to detect small objects. This result can be seen in B.6, where RaftMLP adds
artifacts to the feature map, harming object detection.

Semantic Segmentation Table 4 contains the detailed results of the experiment
performed in Subsection B.2.

B.5 Qualitative Results

Object Detection and Instance Segmentation Fig. 3a shows the ground truth for
an sample of MS COCO validation dataset. Fig. 3b shows the inference result
for RetinaNet with ResNet-50 as the backbone to be installed in mmdetection,
and Fig. 3c, 3d, 3e, and 3f inference results for the four RetinaNets trained in
Subsection B.1. Fig. 3g shows the inference result for Mask R-CNN with ResNet-
50 as the backbone to be installed in mmdetection, and Fig. 3h, 3i, 3j, and 3k
inference results for the four Mask R-CNNs trained in Subsection B.1. Despite
the lack of precision, the figures reveal that results of Global MLP-based models
for the object detection and instance segmentation tasks are satisfactory.

Semantic Segmentation Fig. 4a presents an image with ADE20k validation
dataset overlaid with its ground truth. Fig. 4b shows the inference results of
the model applying ResNet-50, which mmsegmentation provides, as the back-
bone of the Semantic FPN. Fig. 4c, 4d, 4e, and 4f show the inference results for
the four models we trained in Subsection B.2 experiment.
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(a) Ground Truth (b) RetinaNet|ResNet-50

(c) RetinaNet|Mixer-B/16 (d) RetinaNet|RaftMLP-S

(e) RetinaNet|RaftMLP-M (f) RetinaNet|RaftMLP-L

Fig. 3: Qualitative results of object detection and instance segmentation



6 Y. Tatsunami and M. Taki

(g) Mask R-CNN|ResNet-50 (h) Mask R-CNN|Mixer-B/16

(i) Mask R-CNN|RaftMLP-S (j) Mask R-CNN|RaftMLP-M

(k) Mask R-CNN|RaftMLP-L

Fig. 3: Qualitative results of object detection and instance segmentation
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(a) Ground Truth (b) Semantic FPN|ResNet-50

(c) Semantic FPN|Mixer-B/16 (d) Semantic FPN|RaftMLP-S

(e) Semantic FPN|RaftMLP-M (f) Semantic FPN|RaftMLP-L

Fig. 4: Qualitative results of semantic segmentation

B.6 Visualization

We used an image with ImageNet to visualize and compare its feature map. The
image used as input was the ferret image on the left of Fig. 5, which was input
to pre-trained ResNet-50, Mixer-B/16, and RaftMLP-M. Some of the outputs of
the intermediate layers are summarized on the right side of Fig. 5. For ResNet-
50, we used the output of layers 1 through 4; for Mixer-B/16, we used the output
of Blocks 2, 4, 10, and 12; for RaftMLP-M, we used the output of each Level.
We have also included further intermediate layer outputs for the three models,
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Fig. 5: Summary of the comparison of ResNet-50, Mixer-B/16, and RaftMLP-M
intermediate layer feature maps

see Fig. 6, 7, 8, and 9 for Resnet-50, Fig. 10, 11, 12 and 13 for Mixer-B/16, and
Fig. 14, 15, 16, and 17 for RaftMLP-M.

As mentioned in Section 5, the appearance of features in the middle layer
of global MLP-based models is different from that of the convolutional base
represented by ResNet. We believe this is why global MLP-based models do not
perform well when selected as the backbone of existing architectures for object
detection, instance segmentation, and semantic segmentation. The feature map
of RaftMLP-M is different from that of ResNet in that the lower layers have
feature maps that capture the features of the ferret. In contrast, the upper
layers have feature maps with visible artifacts of vertical and horizontal lines.
The feature maps of Mixer-B/16 do not capture the features of the ferret, and
they are overall shuffled and have many similar feature maps. Tasks such as
object detection, semantic segmentation, or even image generation will require
innovations specific to global MLP-based models. The occurrence of artifacts
might have a minor impact on classification, where global average pooling is
used. However, for tasks such as segmentation and image generation, it becomes
a severe problem. Hence, it will be necessary to design architectures and loss
functions that do not emit this artifact. Or else, convolution-based methods
such as RetinaNet, Mask R-CNN, and Semantic FPN may be insufficient to
recover the whole shuffled information by global MLP-based models. To recover
the global shuffled information by the global MLP-based model, global MLP-
based models may lack a module that can capture the global relations, such as
self-attention modules and token-mixing blocks.
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Table 1: Specific settings on the model architectures of hierarchy RaftMLP in
different scales. l denotes level and c′l denotes the number of basic channels in
RaftMLP for level l.

Model RaftMLP-S RaftMLP-M RaftMLP-L

Level Block Setting Block Setting Block Setting

l = 1 RaftMLP×2 c′1 = 64 RaftMLP×2 c′1 = 96 RaftMLP×2 c′1 = 128
l = 2 RaftMLP×2 c′2 = 128 RaftMLP×2 c′2 = 192 RaftMLP×2 c′1 = 192
l = 3 RaftMLP×6 c′3 = 256 RaftMLP×6 c′3 = 384 RaftMLP×6 c′1 = 512
l = 4 RaftMLP×2 c′4 = 512 RaftMLP×2 c′4 = 768 RaftMLP×2 c′1 = 1024

Table 2: Comparison of RetinaNet metrics trained on MS COCO with each
ResNet, PureMLP, ConvMLP, RaftMLP, and Mixer as the backbone.

Backbone #MParams AP b AP b
50 AP b

75 AP b
S AP b

M AP b
L

ResNet-18 [4, 6] 21.3 31.8 49.6 33.6 16.3 34.3 43.2
PureMLP-S [6] 17.6 27.1 44.2 28.3 13.6 29.2 36.4
ConvMLP-S [6] 18.7 37.2 56.4 39.8 20.1 40.7 50.4
RaftMLP-S 19.6 17.7 33.3 16.5 4.5 14.1 32.4

ResNet-50 [4, 6] 37.7 36.3 55.3 38.6 19.3 40.0 48.8
PureMLP-M [6] 25.9 28.0 45.6 29.0 14.5 29.9 37.8
ConvMLP-M [6] 27.1 39.4 58.7 42.0 21.5 43.2 52.5
RaftMLP-M 27.1 19.3 36.3 17.8 5.2 15.9 35.1

ResNet-101 [4, 6] 56.7 38.5 57.8 41.2 21.4 42.6 51.1
PureMLP-L [6] 50.1 28.8 46.8 29.9 15.0 31.0 38.4
ConvMLP-L [6] 52.9 40.2 59.3 43.3 23.5 43.8 53.3
RaftMLP-L 52.9 19.5 36.8 18.1 5.0 16.1 35.4

Mixer-B/16 [10] 70.3 10.7 20.0 10.1 0.1 6.7 25.8
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Fig. 6: Part of the feature maps output from Layer-1 of ResNet-50 with the ferret
images as input
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Fig. 7: All the feature maps output from Layer-2 of ResNet-50 with the ferret
images as input
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Fig. 8: All the feature maps output from Layer-3 of ResNet-50 with the ferret
images as input
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Fig. 9: All the feature maps output from Layer-4 of ResNet-50 with the ferret
images as input

Fig. 10: All the feature maps output from Block-2 of Mixer-B/16 with the ferret
images as input
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Fig. 11: All the feature maps output from Block-4 of Mixer-B/16 with the ferret
images as input
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Fig. 12: All the feature maps output from Block-10 of Mixer-B/16 with the ferret
images as input
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Fig. 13: All the feature maps output from Block-12 of Mixer-B/16 with the ferret
images as input
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Fig. 14: All the feature maps output from Level-1 of RaftMLP-M with the ferret
images as input
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Fig. 15: All the feature maps output from Level-2 of RaftMLP-M with the ferret
images as input

Fig. 16: All the feature maps output from Level-3 of RaftMLP-M with the ferret
images as input
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Fig. 17: All the feature maps output from Level-4 of RaftMLP-M with the ferret
images as input


