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SUPPLEMENTARY WORK

This supplementary material provides ablation studies, additional qualitative
and quantitative results, parameter sensitivity analysis, and further technical
details of the presented approach. We first present an ablation study that demon-
strates the ’human’ interpretability of our method (Section A). We then describe
the architectural details of the networks used in this work (Section B). We then
present qualitative results of our methods of explanations on both fixed and vari-
able networks compared to existing approaches (Section C). Finally, we present
a sensitivity analysis of the λ parameter from our APE algorithm (Section D).

Section A

We conduct an ablation study to affirm that our method produces heatmaps
that reflect the human understanding of objects, thus making them more hu-
manly interpretable. Grad-Cam [3] utilizes the Pointing Game experiment and
human worker feedback to evaluate the capability of various saliency methods to
discriminate for localizing target objects in scenes. We also design an experiment
for our approach on similar lines.

Since point cloud data often comprises only one object in a scene, an anal-
ogous experiment is designed by creating scenarios where two point clouds are
concatenated from random classes and classified. Various explanation methods
are then used to generate heatmaps. Users are then asked to select the point
cloud, which presents a better separation of semantic parts of objects. This al-
lows us to confirm our assumptions that our method is more human interpretable
than comparative approaches.

As shown in Fig. 1, we ask these three questions for various combinations
of randomly selected point clouds from a total of 270 human workers. Major-
ity voting was then used to account for crowd sourcing anomalies. In each of
the questions, we depict two point clouds. We then evaluate if the explanation
heatmap then help the human in selecting the correct option by simply look-
ing at the heatmap. For these question, we obtain an accuracy of 72.2%, 51.1%

⋆ These authors contributed equally.
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(a) APE (ours)

(b) Gradients [4]

(c) PcSN [6]

Fig. 1: Ablation Study
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and 44.4% for our APE method, gradients [4] and PcSN [6] respectively. This
reinforces our assumption that our method is more human interpretable then
comparative approaches.

Section B

Section 4 presents an algorithm that captures gradients’ flow through back-
propagation to the final feature layer, where explanation values are computed
and mapped onto the input point cloud. We supplement this by providing an
illustration in Fig. 2 demonstrating the gradient flow-back and corresponding
feature heatmap generation for the remaining three network architectures used:
DGCNN, PointNet++, and VoteNet.

Fig. 2 a) presents the DGCNN network. This network is fixed-size, i.e., the
resolution of the feature maps is maintained according to the input point cloud.
Therefore feature heatmaps are a direct explanation of the input point cloud.
Gradients for a target class yc are logged back from the output layer to the last
feature map, as highlighted in red. The feature heatmap generated here exhibits
the same size as the input point cloud resulting in a direct transfer to create the
point cloud heatmap, which explains the complete point cloud.

Fig. 2 b) presents the our approach overlayed on the classification part of
the PointNet++ architecture. We flow back gradients to the final feature layer
before the fully-connected layers. The feature heatmap generated at this layer is
of dimension M × 1024, which is smaller than the input point cloud. The APE
algorithm then maps the feature heatmap to the input point cloud iteratively,
resulting in the point cloud heatmap fully explaining every point of the input
point cloud.

Fig. 2 c) presents the VoteNet architecture. Recall that VoteNet is designed
for scene point clouds and, similar to PointNet++, exhibits loss of resolution
of feature maps from the input point cloud. This figure shows that gradients
are flown back to the layer right before ‘propose and classify,’ which are MLP
layers performing down-stream tasks such as classification, segmentation, etc.
The feature maps generated at this layer are of dimensions M x 1024 where M
is less than N . Like PointNet++, the feature heatmap is scaled up to the input
point cloud using the APE algorithm’s iterative mechanism.

Note that the inner loop in the APE algorithm vastly differs from the outer
loop denoted as IHU. IHU outer loop requires full heatmaps to be computed at
each iteration and is designed to refine the point cloud heatmap to gain additional
explanatory power. The inner loop operates on variable networks and handles
dimensionality disagreement between input point cloud P and final feature maps
A. Moreover, point dropping in the outer loop is guided by low-contribution
values, whilst in the inner loop, points are dropped because they have acquired
some explanation value. Finally, the generated point cloud heatmaps over all
iterations are combined by weighted maximum selection in the outer loop and
concatenating feature heatmaps in the inner loop.
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Fig. 2: APE on Various Architectures. These figure represent the architectures
of a) DGCNN [5], b) PointNet++ [2] and c) VoteNet [1]. We have separated the
architecture into the feature extraction segment and the classification segment of the
networks. For all the above networks, the blue arrow represents the gradients flowing
back given a target class yc. Feature heatmaps L are extracted using the gradients from
the last feature maps. The grey boxes show our proposed method for transforming the
feature heatmaps to the point cloud heatmaps.
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Fig. 3: Sensitivity analysis of λ parameter. An optimum value of 205 for λ is shown.

Section C

In this section, we present an extensive set of qualitative visualizations of point
cloud heatmaps generated from our proposed APE algorithm. These explana-
tions indicate most to least contributing points (red to blue) responsible for the
network’s classification decision.

Fig. 4 presents multiple examples of objects and scenes from the datasets
used for each network architecture. Overall, we note that point cloud heatmaps
correctly highlight corners, edges, and conceptually discriminating features of
the objects presented. For example, the plane tends to have wingtips as the
highly discriminating feature whereas the bicycle exhibits large discriminative
features around the paddle or handlebar area. Similar conceptually meaningful
features are seen to be identified as highly contributing across other objects as
well.

Examples of fixed networks, namely PointNet and DGCNN, are presented
in Fig. 4 a) and b) where for each network, we notice a consistent explanation
pattern over the point clouds across these two networks. However, it is apparent
that when comparing fixed networks with variable network (PointNet++), dif-
ferent segments of objects are detected as highly contributing. This result shows
the variability of the network architecture and highlights the different weights
learned by different networks resulting in explanations that emphasise different
segments of objects. However, we do note some level of consistency for some
objects, particularly the plane. A consistent pattern is noticed in explanations
for the plane whereby the wings are identified as a highly discriminating fea-
ture across all network architectures. In contrast, a chair presents contributing
features that switch between the back, the seat or the corners of the chair.

In scene point clouds, Fig. 4 d), we notice a highly accurate detection of
contributing points that form objects that are being classified, as labeled atop
the input diagrams. Furthermore, the APE algorithm continually generates ex-
planations that posses sharp spatial boundaries. Finally we note a significant
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Fig. 4: Qualitative overview of all networks and corresponding explana-
tion methods. Sample examples are taken from a single-object dataset as well as
a scene point cloud dataset. Given a target class, the generated explanation point
cloud heatmaps are presented. Ours are compared with Gradients [4] and Point Cloud
Saliency Map (PcSN) [6] approaches.
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improvement in interpretability of heatmaps generated from our method in com-
parison to the trivial Gradients method and the SOTA point cloud saliency maps
approach across all examples.

Section D

Here we present the effect of the λ hyperparameter on the accuracy of the expla-
nation point cloud heatmaps. Recall that, in the APE algorithm, λ parameter
specifies the number of iterations of the outer loop (IHU). The IHU iterations
control the level of refinement of the final point cloud heatmap. This is done by
iteratively dropping the lowest relevance points and recomputing the heatmap.
Heatmaps from all iterations are merged to create a highly descriptive point
cloud heatmap. Figure 3 demonstrates the effect of λ on the accuracy (pre-
sented as the area under the curve (AUC) from point dropping experiments) as
λ changes. The low-drop AUC increases gradually with a higher λ value as more
iterations result in a superior point cloud. The high-drop AUC drops slightly, but
the overall trend remains stable. These two observations are testament to the
improvement obtained by employing an outer loop in the APE algorithm. We
report a value of 205 as a good trade-off between point cloud heatmap quality
obtained and the number of iterations needed.
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