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1 Evaluation Metrics

We evaluate the performance of ours and competing methods with three saliency
evaluation metrics, including: Mean Absolute Error (M), mean F-measure (Fβ)
and mean E-measure (Eξ) [1] . We also present an uncertainty based mean
absolute error to estimate the divergence modeling ability of each model.

MAE M is defined as the per-pixel wise difference between predicted saliency
map s and a per-pixel wise binary ground-truth y:

MAE =
1

H ×W
|s− y|, (1)

where H and W are height and width of s. MAE provides a direct estimate of
conformity between estimated and ground-truth maps. However, for the MAE
metric, small objects naturally assign a smaller error and larger objects have
larger errors.

F-measure Fβ is a region based similarity metric, and we provide the mean
F-measure using varying fixed (0-255) thresholds.

E-measure Eξ is the recent proposed Enhanced alignment measure [1] in
the binary map evaluation field to jointly capture image-level statistics and local
pixel matching information.

Uncertainty Based MAE: The proposed uncertainty based MAE is used
to evaluate the accuracy of the generated uncertainty map. Given multiple
annotations {yj}Mj=1, we compute its mean annotation ȳ = 1

M

∑M
j=1 y

j . The
ground truth uncertainty is then defined as the entropy of the mean annotation:
Ugt = H[ȳ]. At test time, we run multiple times of sampling (for the latent vari-
able models) or directly define the predictions from the multi-head structure of
deep ensemble as stochastic predictions. We then obtain the mean prediction
and its entropy (uncertainty) of each stochastic model. The uncertainty based
MAE is defined as the MAE of the predicted uncertainty and the ground truth
uncertainty Ugt.
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Table 1. Performance of the proposed strategy within the ensemble based frameworks.

DUTS [2] ECSSD [3] DUT [4] HKU-IS [5] COME-E [6] COME-H [6]
Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓

Base_A .811 .897 .045 .903 .931 .044 .741 .846 .059 .887 .935 .036 .852 .905 .049 .807 .859 .080
Base_M .824 .911 .041 .916 .946 .038 .754 .864 .055 .900 .950 .032 .877 .927 .040 .838 .882 .070
DE_A .819 .906 .042 .910 .939 .040 .744 .855 .057 .895 .940 .034 .870 .920 .043 .831 .876 .073
DE_R .816 .900 .043 .916 .944 .038 .738 .843 .060 .892 .939 .036 .869 .920 .043 .832 .880 .072

Table 2. Performance of the proposed strategy within the GAN based frameworks.

DUTS [2] ECSSD [3] DUT [4] HKU-IS [5] COME-E [6] COME-H [6]
Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓

Base_A .811 .897 .045 .903 .931 .044 .741 .846 .059 .887 .935 .036 .852 .905 .049 .807 .859 .080
Base_M .824 .911 .041 .916 .946 .038 .754 .864 .055 .900 .950 .032 .877 .927 .040 .838 .882 .070
GAN_A .803 .895 .045 .906 .939 .040 .736 .850 .060 .879 .931 .038 .855 .912 .046 .816 .867 .076
GAN_R .817 .906 .041 .914 .944 .039 .741 .849 .059 .895 .946 .033 .873 .926 .040 .834 .882 .070

Table 3. Performance of the proposed strategy within the VAE based frameworks.

DUTS [2] ECSSD [3] DUT [4] HKU-IS [5] COME-E [6] COME-H [6]
Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓

Base_A .811 .897 .045 .903 .931 .044 .741 .846 .059 .887 .935 .036 .852 .905 .049 .807 .859 .080
Base_M .824 .911 .041 .916 .946 .038 .754 .864 .055 .900 .950 .032 .877 .927 .040 .838 .882 .070
VAE_A .798 .888 .049 .910 .940 .039 .727 .843 .068 .890 .937 .036 .853 .909 .048 .813 .865 .078
VAE_R .822 .899 .042 .913 .936 .042 .723 .824 .062 .895 .937 .036 .880 .924 .041 .838 .879 .071

Table 4. Performance of the proposed strategy within the ABP based frameworks.

DUTS [2] ECSSD [3] DUT [4] HKU-IS [5] COME-E [6] COME-H [6]
Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓

Base_A .811 .897 .045 .903 .931 .044 .741 .846 .059 .887 .935 .036 .852 .905 .049 .807 .859 .080
Base_M .824 .911 .041 .916 .946 .038 .754 .864 .055 .900 .950 .032 .877 .927 .040 .838 .882 .070
ABP_A .777 .866 .052 .888 .916 .049 .720 .829 .063 .853 .900 .046 .835 .886 .054 .794 .844 .085
ABP_R .805 .896 .047 .911 .938 .044 .734 .846 .060 .885 .937 .039 .864 .911 .050 .824 .863 .083

2 Performance Comparison of Divergence Modeling
Techniques

We provide more comparisons of the divergence modeling techniques in this
section. Note that, the baseline models training with all pairs of samples (D2 =
{{xj

i , y
j
i }Mj=0}Ni=1) and training with only the majority voting ground truth (D0 =

{xj
i , y

0
i }Ni=1) are denoted as “Base_A” and “Base_M” respectively.

2.1 Deep Ensemble

We show deterministic prediction of the deep ensemble framework in Table 1,
where “DE_R” is trained with the proposed random sampling strategy, and
“DE_A” is trained with D2. The comparable performance of “DE_A” and
“DE_R” explains that our random sampling strategy will not decrease the per-
formance. Then, we show the produced uncertainty maps in Fig. 1, which further
explains the superiority of our strategy in saliency divergence modeling.
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Fig. 1. Uncertainty comparison of the deep ensemble framework with (“DE_A”)/with-
out (“DE_R”) the proposed random sampling strategy.
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Fig. 2. Uncertainty comparison of the GAN framework with (“GAN_A”)/without
(“GAN_R”) the proposed random sampling strategy.

2.2 Latent Variable Models

Similarly, we show model performance of each latent variable model training
with all annotations (D2) and our random sampling strategy in Table 2, 3 and
4, indicating the GAN [7], VAE [8] and ABP [9] based latent variable mod-
els respectively. Again, the comparable deterministic performance of each latent
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Fig. 3. Uncertainty comparison of the VAE framework with (“VAE_A”)/without
(“VAE_R”) the proposed random sampling strategy.
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Fig. 4. Uncertainty comparison of the ABP framework with (“ABP_A”)/without
(“ABP_R”) the proposed random sampling strategy.

variable model with/without our random sampling strategy shows that our ran-
dom sampling strategy can maintain the model deterministic performance.

We further show the generated uncertainty maps of each method with/without
our random sampling strategy in Fig. 2, 3 and 4 to explain the superiorty of the
proposed random sampling strategy.
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Table 5. Performance comparison with model trained with majority voting ground
truth within the GAN based frameworks.

DUTS [2] ECSSD [3] DUT [4] HKU-IS [5] COME-E [6] COME-H [6]
Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓

Base_M .824 .911 .041 .916 .946 .038 .754 .864 .055 .900 .950 .032 .877 .927 .040 .838 .882 .070
GAN_M .817 .905 .042 .913 .945 .038 .747 .855 .058 .893 .944 .035 .870 .923 .042 .831 .881 .071
GAN_R .817 .906 .041 .914 .944 .039 .741 .849 .059 .895 .946 .033 .873 .926 .040 .834 .882 .070

Table 6. Performance comparison with model trained with majority voting ground
truth within the VAE based frameworks.

DUTS [2] ECSSD [3] DUT [4] HKU-IS [5] COME-E [6] COME-H [6]
Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓

Base_M .824 .911 .041 .916 .946 .038 .754 .864 .055 .900 .950 .032 .877 .927 .040 .838 .882 .070
VAE_M .817 .905 .042 .913 .945 .038 .744 .852 .058 .893 .943 .035 .873 .924 .042 .831 .880 .072
VAE_R .822 .899 .042 .913 .936 .042 .723 .824 .062 .895 .937 .036 .880 .924 .041 .838 .879 .071

Table 7. Performance comparison with model trained with majority voting ground
truth within the ABP based frameworks.

DUTS [2] ECSSD [3] DUT [4] HKU-IS [5] COME-E [6] COME-H [6]
Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓ Fβ ↑Eξ ↑M ↓

Base_M .824 .911 .041 .916 .946 .038 .754 .864 .055 .900 .950 .032 .877 .927 .040 .838 .882 .070
ABP_M .801 .893 .045 .908 .942 .040 .732 .840 .060 .886 .937 .038 .862 .916 .045 .825 .874 .074
ABP_R .805 .896 .047 .911 .938 .044 .734 .846 .060 .885 .937 .039 .864 .911 .050 .824 .863 .083

Im
ag

e
G

T
G

A
N

_
M

G
A

N
_

R

Fig. 5. Uncertainty comparison of the GAN framework with majority voting annota-
tion and with multiple annotations by using the proposed random sampling strategy.

3 Uncertainty with Majority Voting GT

In this section, we further compare divergence modeling performance of genera-
tive models with majority voting ground truth y0 and with multiple annotations
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Fig. 6. Uncertainty comparison of the VAE framework with majority voting annotation
and with multiple annotations by using the proposed random sampling strategy.
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Fig. 7. Uncertainty comparison of the ABP framework with majority voting annotation
and with multiple annotations by using the proposed random sampling strategy.

{yj}Mj=1 by using the proposed random sampling strategy. The deterministic
performance is shown in Table 5, 6 and 7, representing the GAN, VAE and
ABP based frameworks respectively. The comparable deterministic performance
indicates again that our random sampling strategy will not decrease model de-
terministic predictions.
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Table 8. Performance of applying the proposed random sampling strategy to two other
SOTA SOD models. “-E”, “-G”, “-V” and “-A” indicate the corresponding deep ensemble,
GAN, VAE and ABP based model.

DUTS ECSSD DUT HKU-IS COME-E COME-H
Method Fβ Eξ M Fβ Eξ M Fβ Eξ M Fβ Eξ M Fβ Eξ M Fβ Eξ M
MINet .820 .902 .041 .920 .947 .037 .751 .852 .053 .898 .945 .032 .877 .924 .040 .840 .884 .068
-E .835 .912 .040 .926 .951 .034 .763 .864 .056 .903 .947 .032 .888 .931 .037 .849 .889 .065
-G .839 .914 .038 .927 .950 .034 .768 .870 .052 .903 .946 .032 .891 .933 .037 .853 .890 .065
-V .830 .907 .041 .923 .946 .036 .749 .866 .056 .897 .940 .034 .891 .931 .037 .849 .886 .067
-A .828 .906 .040 .921 .945 .037 .747 .849 .055 .896 .938 .035 .887 .928 .039 .842 .878 .072
GateNet .820 .898 .042 .920 .943 .038 .749 .847 .056 .897 .939 .035 .876 .922 .041 .839 .880 .070
-E .830 .905 .044 .925 .949 .036 .760 .861 .063 .898 .941 .036 .882 .925 .041 .842 .881 .072
-G .850 .922 .036 .926 .950 .035 .782 .877 .050 .908 .949 .031 .892 .933 .037 .852 .891 .065
-V .845 .917 .038 .928 .950 .035 .775 .871 .052 .905 .946 .032 .892 .932 .037 .852 .889 .066
-A .840 .915 .039 .922 .947 .037 .772 .871 .055 .904 .947 .033 .886 .929 .040 .845 .884 .070

Image mj_GT GT1 GT2 GT3

MINet MINet-E MINet-G MINet-V MINet-A

GateNet GateNet-E GateNet-G GateNet-V GateNet-A

Fig. 8. Uncertainty maps of two SOTA SOD model (MINet[10] and GateNet[11]) with
the proposed general divergence modeling strategy. The first column shows image, the
majority voting ground truth and labels from different annotators. From the second
column to the last one, we show prediction (top) and the corresponding predictive
uncertainty (bottom).

We further show the generated uncertainty maps of each latent variable model
with majority voting annotation and multiple annotations using the proposed
strategy, and the results are shown in Fig.5, 6 and 7. The more uniformly acti-
vated uncertainty regions further explain the superior performance of our pro-
posed strategy in saliency divergence modeling.
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Image/uncer GT_m/Pred_m GT1/Pred1 GT2/Pred2 GT3/Pred3 GT4/Pred4 GT5/Pred5

Fig. 9. Generated diverse saliency maps. For each example, the first column shows,
from left to right, input image, ground truth map after majority voting, and ground
truth maps from 5 different annotators; the second column shows the predicted un-
certainty map, prediction of our majority voting branch, and five generated diverse
saliency maps.
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4 Applying Our Solution to Other SOTA SOD Models

We additionally apply our strategy to two other SOTA SOD models, namely
MINet[10] and GateNet[11]. The deterministic performance is reported in Table
8, which clear shows that our random sampling strategy can in general keep
the deterministic performance untouched. We further visualize the produced
uncertainty maps of our methods in Fig. 8. The generated uncertainty maps
of our methods can indeed explain the less salient regions, which verifies the
superiority of our proposed strategy.

5 Generated saliency maps

In addition to the uncertainty maps shown previously, we also show our gener-
ated diverse saliency maps in Fig. 9, where each pair (top-down) of images are
explained in the corresponding text on top of the column. e.g.. “Image/uncer”
indicates the image/uncertainty map pair; “GT_m/Pred_m” is the pair show-
ing the majority ground truth and the prediction from our majority prediction
branch; “GTM/PredM” (M=1,2,3,4,5) represents the pair of diverse annota-
tion and the corresponding prediction. Note that, we pair the prediction to the
diverse annotation via nearest neighbor searching only for visualization. In prac-
tice, we do not pair them. Fig. 9 further demonstrate the superiority of our
divergence modeling strategy. Specifically, the last two examples in Fig. 9 reveal
that our models have the potential to discover the less salient objects that are
not presented in the multiple ground truth annotations.
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