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Abstract. In this document, we provide more details for our proposed
method. Firstly, we present the complete experiment of using different
rendering styles, including position encoding, silhouette, and shading for
both PointNet and DGCNN (Section 1). We also include additional results
for rest of object classification task with PointNet backbone(Section 2.1),
6-fold cross validation results for the semantic segmentation task on
S3DIS dataset (Section 2.3). Secondly, we also report the performance
of training with limited data on both ModelNet40 and ScanObjectNN
(Section 3). Finally, we report detail settings, runtime statistics and more
insights into the proposed method by analyzing the t-SNE embedding
and the critical point and upper-bound point visualizations (Section 4).

1 Evaluation of multi-view rendering

We report the performance of PointNet [7] and DGCNN [12] on different ren-
dering styles in Table 1. It can be seen that shaded images yield slightly higher
performance than other renderings on both datasets. However, other rendering
styles such as position encoding (RGB) and silhouette still produce competi-
tive results. It implies that in cases where only point clouds are available for
pre-training, RGB and silhouette rendering can be used while not causing a
significant performance difference compared to mesh-based rendering.

2 Details of downstream tasks

2.1 Object classification

Similar to the comparison with the DGCNN backbone in the main paper, we
provide comparisons with the PointNet backbone. The results are shown in Table
2. As can be seen, our method outperforms random inititalization as well as other
pre-training methods, including Jigsaw [3], OcCo [11], and CM [5].
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PointNet | DGCNN
RGB Silhouette  Shading ‘ RGB Silhouette  Shading
ModelNet40 [13] 88.3 £ 0.2 88.9 + 0.2 88.9 + 0.1/92.5 £+ 0.2 92.5 + 0.2 92.5 £+ 0.1
ScanObjectNN [10] 79.7 £ 0.5 788 £ 0.6 79.3 £0.3|82.8 £ 0.5 82.0+ 0.2 82.8 £ 1.0

ScanObjectNN BG [10] 75.1 £ 0.3 75.6 +£ 0.4 75.7 + 0.5/ 81.0 £ 0.2 81.8 + 0.9 82.6 + 0.7

Table 1: Effect of different rendering techniques to our pre-training

PointNet
Random Jigsaw OcCo CM Ours

MN40 [13] 88.9+0.0 89.2+0.0 89.2+0.1 89.1+0.1 89.5+0.2
SO [10] 78.240.1 79.440.1 79.5+0.1 79.340.5 80.5+0.4
SO BG [10] 76.440.0 76.44+0.4 76.44+0.1 74.14+0.2 78.5+0.5

Table 2: Comparison among random, Jigsaw [8], OcCo [L1], CM [5], and our
initialization to the object classification downstream task. We reported the mean
and standard deviation at the best epoch over three runs.

2.2 A note on the OcCo baseline

It can be seen that in our paper, some experiment results of OcCo are lower
than the results reported by its original paper. We did our best to reproduce the
results of OcCo but unfortunately, we were not able to match the results with the
original paper. We confirmed this issue by using the docker image provided by
the OcCo authors and rerun the experiments, but still could not reproduce the
results exactly as in the OcCo paper. For fair comparison and reproducibility, we
decided to report the results based on our own runs. Additionally, the pre-training
time of OcCo is about 7x slower than our method.

2.3 Semantic segmentation

In additional to the Area-5 results reported in the main paper, we further report
the results of 6-fold cross-validation over the 6 areas on the S3DIS dataset. For
completeness, all results are shown in Table 3 (Area-5), and Table 4 (6 folds). In
both cases, we can see that models initialized by our method outperform others
in both PointNet 7] and DGCNN [12].

2.4 Details of PointContrast baseline

Semantic segmentation: We evaluate on two datasets S3DIS [1| and ScanNet
[3]. We use SGD optimizer with the initial learning rate 0.1 and 0.8 for S3DIS
and ScanNet respectively. We use PolynomialLR scheduler with a power factor
0.9.For ScanNet dataset, we train the model with 15000 iterations and batch size
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PointNet \ DGCNN
Random Jigsaw OcCo Ours ‘ Random Jigsaw OcCo Ours
mAcc 83.9 82.5 83.6 85.0 86.8 86.8 87.0 87.0
mloU 43.6 43.6 44.5 46.7 49.3 48.2 49.5 49.9

Table 3: Fold 1 of overall point accuracy (mAcc) and mean Intersection-over-Union
(mIoU) on the S3DIS (Stanford Area 5 Test) [1]

PointNet \ DGCNN

Random Jigsaw OcCo Ours‘Random Jigsaw OcCo Ours

mAcc 82.8 82.8 82.7 83.2| 86.9 86.6 87.1 87.5
mloU  50.6 51.4 51.1 52.1| 584 58.1 58.7 59.0

Table 4: Average of 6-fold cross validation of overall point accuracy (mAcc) and
mean Intersection-over-Union (mIoU) on the S3DIS [I]

48 on 4 GPUs. For S3DIS dataset, we train the model with 20000 iterations and
batch size 32 on 1 GPU.

Object detection: For object detection task, in the training we follow the
configuration of PointContrast [14]. We use Adam optimizer with the initial
learning rate 0.001 and train the model on 1 GPU with 180 epochs. Specifically,
we train the model with batch size 32 and 64 for ScanNet and SUN RGB-D,
respectively. Before voxelization, we sample 40000 and 20000 points from original
point of ScanNet and SUN RGB-D and the voxel sizes are 2.5 cm and 5 cm
respectively.

3 Training with limited data

To prove the effectiveness of our pre-training, we supervise the downstream
task with fewer data when the network is pre-trained and compare to other
initializations. We show both results on ModelNet40 (also reported in the paper)
and ScanObjectNN. In this experiment, we decrease the number of training
samples to 5%, 10%, 20%, 50%, and 80%, and evaluate the model on the original
test set. The results are reported in Table 5, which shows that the performance
of our method outperforms Random, Jigsaw [3], and OcCo [11] in most cases
except DGCNN on 80% of ScanObjectNN.

4 Visualization

4.1 t-SNE embedding

We further visualize learned object embeddings of the ModelNet40 test set by
using t-SNE with perplexity 15 and 1000 iterations in Figure 1. We observe that
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(a) Jigsaw [8] on PointNet
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(d) Jigsaw [3] on DGCNN

Fig. 1: t-SNE visualization of the object embedding of the test data of ModelNet40.
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(b) OcCo [11] on PointNet
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(¢) Ours on PointNet
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(e) OcCo [11] on DGCNN

(f) Ours on DGCNN

Our method has better cluster quality measured by NMI and purity.
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Fig. 2: Critical and upper-bound point visualizations for models pretrained with
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ModelNetd0 [17] PointNet \ DGCNN
Random Jigsaw OcCo Ours‘Random Jigsaw OcCo Ours
5% 73.2 73.8 739 77.9| 82.0 82.1 82.3 84.9
10% 75.2 77.3 75.6 79.0| 84.7 84.1 84.9 86.6
20% 81.3 82.9 81.6 84.6| 894 89.2 89.1 90.2
50% 86.6 86.5 87.1 87.6| 91.6 91.8 91.7 92.4
70 % 88.3 88.4 88.4 88.7| 92.3 92.4 92.5 92.8
ScanObjectNN [10] PointNet \ DGCNN
Random Jigsaw OcCo Ours‘Random Jigsaw OcCo Ours
5% 52.1 51.8 53.7 60.8] 48.3 46.7 51.4 60.9
10% 63.0 62.3 62.5 69.0| 58.7 58.0 61.5 69.5
20% 69.0 68.5 67.1 72.2| 69.8 68.7 71.6 74.7
50% 73.7 75.1 72.6 77.0] 76.3 77.1 78.0 81.6
80 % 76.1 77.9 76.7 78.4| 79.9 78.1 80.8 82.1

Table 5: Performance of the object classification task trained with fewer data
on ModelNet40 [13] and ScanObjectNN [10]. Our method has significant gains
compared to other initialization methods. We reported the mean at the best
epoch over three runs

the embeddings learned from using our initialization for different classes are well
clustered than those acquired with OcCo and Jigsaw initialization indicated by
normalized mutual information (NMI) and purity [6].

4.2 Critical point sets

We then visualize the critical point sets and upper-bound shapes by following
PointNet [7] for selected samples in Figure 2. To recap, a critical point set is
a set of points that contribute directly to the last max pooled feature, i.e., the
global feature. Perturbing the critical point set can lead to changes in the global
features and thus classification results. The upper-bound shape is the largest
possible point set that does not directly affect the global feature of the original
shape. From Figure 2, we found that in our method, the critical point sets can
represent the object skeleton more faithfully (e.g., the toilet example) than other
methods. Jigsaw sometimes causes sparse critical points, and OcCo tends to
discard points along thin geometric features. We also found that the upper-bound
shape of our initialization appears thicker than that of Jigsaw and OcCo, which
we hypothesize that our model can be more robust to point perturbations than
Jigsaw and OcCo.

5 Running time

Following the request, we provide the pre-training time of three methods on an
NVIDIA Tesla V100 GPU in Table 6. As can be seen, the pre-training time
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of our method is slightly longer than Jigsaw and significantly shorter than OcCo.
Despite such, our method achieves better performance than the others.

Jigsaw OcCo Ours

PointNet 2.6 24.8 3.8
DGCNN 4.1 35.1 5.7

Table 6: Pre-training time of three methods (hours).

Additionally, we provide more statistics of our training process. Specifically,
it takes 2.3, 2.4, and 6.2 hours to render RGB, silhouette, and shaded images,
respectively. For the 2D self-supervision, we train the model for 80 hours on
an NVIDIA Tesla V100 GPU. Knowledge distillation takes 3.8, 5.7, 26 and 62
hours of training for PointNet [7], DGCNN [12], SR-UNet on ModelNet40 [13]
and SR-UNet on ScanNet [3], respectively. As for downstream-task training, the
PointNet classification model takes 18.5 hours, and the DGCNN classification
model takes 75.0 hours. The segmentation models require longer training time,
with 32.0 hours and 90.0 hours for PointNet and DGCNN backbone, respectively.
For SR-UNet backbone|[2], in semantic segmentation task, it consumes 32 and 22
hours for S3DIS [1] and ScanNet [3], respectively. For object detection task on
ScanNet [3], it takes 8.5 hours.

6 Future Work

Our method is not without limitations. First, our image encoder is trained from
scratch without leveraging existing popular feature extractors such as VGG [9] or
ResNet [1]. Further utilizing such pre-trained networks on natural images could
potentially improve the performance of the downstream tasks, which could be
interesting for future work. Second, the multi-view rendering used in our method
could potentially be further explored. While we attempted with position encoding,
silhouette, and shaded rendering, there are many other rendering styles that
could be experimented, e.g., rendering with colors and textures when applicable,
rendering with depth completion, etc. Applying advanced techniques to enhance
multi-view rendering is thus a good avenue for future research.

References

1. Armeni, 1., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese,
S.: 3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1534-1543 (2016)

2. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convo-
lutional neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 3075-3084 (2019)

3. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Niefner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE (2017)



10.

11.

12.

13.

14.

SSL with Multi-View Rendering for 3D Point Cloud Analysis 7

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

Jing, L., Zhang, L., Tian, Y.: Self-supervised feature learning by cross-modality
and cross-view correspondences. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 1581-1591 (2021)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Re-
trieval. Cambridge University Press (2008), http://nlp.stanford.edu/IR-book/
information-retrieval-book.html

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (July 2017)

Sauder, J., Sievers, B.: Self-supervised deep learning on point clouds by reconstruct-
ing space. Advances in Neural Information Processing Systems 32 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, D.T., Yeung, S.K.: Revisiting point
cloud classification: A new benchmark dataset and classification model on real-world
data. In: International Conference on Computer Vision (ICCV) (2019)

Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud pre-
training via occlusion completion. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 9782-9792 (2021)

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5),
1-12 (2019)

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2015)

Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: Pointcontrast: Unsuper-
vised pre-training for 3d point cloud understanding. In: European Conference on
Computer Vision. pp. 574-591. Springer (2020)


http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

	Self-Supervised Learning with Multi-View Rendering for 3D Point Cloud Analysis– Supplementary Material –

