
MatchFormer: Interleaving Attention in
Transformers for Feature Matching

(Supplementary Materials)

Qing Wang∗, Jiaming Zhang∗, Kailun Yang†,
Kunyu Peng, and Rainer Stiefelhagen

Karlsruhe Institute of Technology, Germany
https://github.com/jamycheung/MatchFormer

1 Implementation Details
Transformer. We design a four-stage hierarchical Transformer, using gray-scale
images as input, with an input channel of 1. Each stage contains a positional
patch embedding layer and three attention layers. The channel of the feature map
is gradually increased by {128, 192, 256, 512}, and the resolution is decreased by
{1/2, 1/4, 1/8, 1/16} (in the large version), or {1/4, 1/8, 1/16, 1/32} (in the lite
version). Our backbone does not contain a stem layer [3], and we use a large 7×7
convolution layer for the first patch embedding layer and a 3×3 convolution layer
for the next three layers.
MLP. Inspired by the MLP design of SegFormer [8], we adopt to use the MLP
layer after each attention layer in our match-aware encoder, which consists of two
linear layers and a depth-wise convolution layer. To avoid excessive computation,
we set the hidden features ratio [8] of all MLPs to 4. The MLP layers can enhance
the features extracted by attention and introduce residual connections.
Interleaving Self-/Cross-Attention. The extract-and-match strategy is con-
structed by interleaving self- and cross-attention within our MatchFormer model.
There are four stages in the match-aware encoder. As the feature map of the
shallow stage (i.e., stage-1 and stage-2) emphasizes textural information, more
self-attention are applied to focus on exploring the feature itself. As the feature
map of the deep stage (i.e., stage-3 and stage-4) is biased toward semantic in-
formation, more cross-attention are applied to explore similarity cross images.
The code of MatchFormer is reported in Algorithm 1.
More Structural Analysis. To explore the effect of the attention module
arrangement inside the backbone of MatchFormer, we spend large effort to ana-
lyze various self-attention and cross-attention schemes at each stage, where both
modules interact in a separate or interleaved manner. To be consistent with the
ablation study setting, we utilize the indoor model trained on 10% of ScanNet [2]
to conduct the experiment.

As shown in Table 1, the result in first row indicates that using only self-
attention without cross-attention limits the matching capacity of transformer-
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Algorithm 1 Code of interleaving self-/cross-attention in a PyTorch-like style.

# proj: channel projection
# DWConv: depth-wise convolution layer
# softmax: softmax layer
# sigmoid: sigmoid layer

import torch
import torch.nn as nn

def posPE(image):
image = nn.Conv2D(image)
weight = sigmoid(DWConv(image))
image_enhance = image * weight
return image_enhance

def interleaving_attention(image_A, image_B, cross_flags):
seq_A, seq_B = posPE(image_A), posPE(image_B)
Q_A, K_A, V_A = nn.Linear(seq_A).reshape()
Q_B, K_B, V_B = nn.Linear(seq_B).reshape()

for flag in cross_flags:
if flag == True: # cross-attention

attn_A = Q_A @ K_B.transpose()
attn_A = attn_A.softmax()
attn_B = Q_B @ K_A.transpose()
attn_B = attn_B.softmax()
image_A = (attn_A @ V_B).transpose().reshape()
image_B = (attn_B @ V_A).transpose().reshape()

else: # self-attention
attn_A = Q_A @ K_A.transpose()
attn_A = attn_A.softmax()
attn_B = Q_B @ K_B.transpose()
attn_B = attn_B.softmax()
image_A = (attn_A @ V_A).transpose().reshape()
image_B = (attn_B @ V_B).transpose().reshape()

return image_A, image_B

# MatchFormer stages
# stage1: cross_flags in 3 layers = [False, False, True]
# stage2: cross_flags in 3 layers = [False, False, True]
# stage3: cross_flags in 3 layers = [False, False, True]
# stage4: cross_flags in 3 layers = [False, False, True]

def MatchFormer(image_A, image_B):
for _ in [stage1, stage2, stage3, stage4]:

mage_A, image_B = interleaving_attention(image_A, image_B, cross_flags)
return image_A, image_B

based encoder. The results of the other separate arrangements show that ar-
ranging cross-attention modules after the self-attention stage of MatchFormer
can improve the performance of pose estimation, reaching 81.8% in precision
(P), when three stages are constructed with cross-attention modules. However,
excessive usage of cross-attention will degrade the performance due to the lack
of self-attention modules. Thus, we propose an attention-interleaving strategy
for combining the self- and cross-attention within individual stage of backbone.
In the experiments of the last four rows, the interleaving attention scheme of
MatchFormer achieves the best performance (86.7% in P). The results indicate
the effectiveness of our proposed interleaving arrangement and prove our obser-
vation that building a match-aware transformer-based encoder to perform the
extract-and-match strategy can benefit the feature matching.
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Table 1. More Structural Analysis of the attention arrangement in the encoder.
‘S’ and ‘C’ are short for a self-attention layer and a cross-attention layer, respectively.

Structure Pose estimation AUC Pstage1 stage2 stage3 stage4 @5◦ @10◦ @20◦
Se

pa
ra

te

SS SS SS SS 7.57 20.57 36.80 75.8
SS SS SS CC 10.77 24.37 42.54 78.2
SS SS CC CC 13.85 30.31 48.53 80.7
SS CC CC CC 13.58 29.57 48.12 81.8
CC CC CC CC 11.26 26.15 44.32 80.9
SSS SSS CCC CCC 12.22 27.71 45.62 81.3

In
te

rl
ea

vi
ng

SC SC SC SC 14.04 30.57 48.31 81.1
SSC SSC SSC SSC 12.25 27.05 43.78 83.4
SCC SCC SCC SCC 14.75 31.03 48.27 85.3
SSC SSC CCC CCC 12.82 28.48 46.29 81.0
SSC SSC SCC SCC 18.01 35.87 53.46 86.7

Coarse-to-fine Matching Module. The hierarchical encoder in MatchFormer
extracts multi-scale features and the decoder delivers both low- and high-
resolution feature pairs ( 1

rc
-scaled coarse features and 1

rf
-scaled fine features,

w.r.t., the size of input images) for coarse-to-fine matching [6].
To begin with coarse matching, the 1

rc
-scaled coarse feature pair H1

rc
×W1

rc

and H2

rc
×W2

rc
is reshaped into sequences Ic1 and Ic2 to calculate the score

Si,j=
1
τ ·⟨I

c
1(i), I

c
2(j)⟩ of matrix S∈H1W1

rc
×H2W2

rc
, where ⟨·,·⟩ is the inner prod-

uct, τ is the temperature coefficient, H and W are the image height and width.
To calculate the probability of soft mutual closest neighbor matching, we use
softmax on both dimensions of S (referred to as 2D-softmax). The coarse match-
ing probability P c

i,j is calculated via Eq. (1).

P c
i,j = softmax(Si,j) · softmax(Sj,i). (1)

To select coarse match predictions M c, P c
i,j must be larger than the threshold θ

and fulfill the mutual closest neighbor (MNN) criterion, as indicated in Eq. (2):

M c
i,j = 1(P c

i,j>θ) ∧ MNN(P c
i,j)

. (2)

Given a matched spot {(i,j)|M c
i,j=1} on coarse feature maps, its paired

windows are cropped as (wi′ ,wj′) to conduct fine matching, where (i′, j′) are
back-located at the 1

rf
-scaled fine feature maps. The fine match probability P f

i,j

of the center vector c⃗i of wi related to the entire wj can be calculated by
softmax. Solving the expectation of P f

i,j = softmax(< c⃗i,wj >) can determine
the fine matching Mf

i,j on wj , then we map it to the original resolution to
establish the final matching. Fine matching can be formulated as Ei→j(P

f
i,j |c⃗i).

2 Indoor Pose Estimation.
Robustness evaluation. To evaluate the robustness with less training data,
we further compare MatchFormer-large-LA and LoFTR in different percentages
of datasets in Table 2. The different sizes of training data are selected from the
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Table 2. Indoor pose estimation on ScanNet with less training data. The AUC
of three different thresholds and the average matching precision (P) are evaluated.

Method Data Pose estimation AUC Ppercent @5◦ @10◦ @20◦

LoFTR [6] 10% 15.47 31.72 48.63 82.6
MatchFormer-large-SEA 10% 18.01 (+2.54) 35.87 (+4.15) 53.46 (+4.83) 86.7 (+4.1)

LoFTR [6] 30% 18.20 35.54 52.58 84.1
MatchFormer-large-SEA 30% 21.20 (+3.00) 39.65 (+4.11) 57.16 (+4.58) 88.5 (+4.4)

LoFTR [6] 50% 19.65 37.48 53.89 86.3
MatchFormer-large-SEA 50% 21.10 (+1.45) 39.91 (+2.43) 57.36 (+3.47) 89.0 (+2.7)

LoFTR [6] 70% 19.55 37.82 54.77 85.7
MatchFormer-large-SEA 70% 21.34 (+1.79) 41.08 (+3.26) 58.97 (+4.20) 88.8 (+3.1)

LoFTR [6] 100% 22.06 40.80 57.62 87.9
MatchFormer-large-SEA 100% 24.31 (+2.25) 43.90 (+3.10) 61.41 (+3.79) 89.5 (+1.6)

first x∈{10,30,50,70,100} percentages of the original dataset. With different sizes
of training data, MatchFormer has maintained consistent performance. Hence it
has tremendous potential for data-constrained real-world scenarios.
Qualitative Comparisons. The visualizations of indoor matching qualitative
comparisons can be found in Fig. 1. From top to bottom are the matching results
from SuperGlue [5], LoFTR [6] with 10% training data, MatchFormer-large-SEA
with 10% training data, LoFTR and MatchFormer-large-SEA with all training
data. Due to the captured long-range dependency, MatchFormer achieves dense
feature matching in such challenging indoor scenes with large viewing angle
changes, such as the first and the second column in Fig. 1. In the low-texture
scene of the third column, our method can provide more matches compared to
SuperGlue and LoFTR. Additionally, the performance of MatchFormer-large-
SEA is significantly better than LoFTR, when they are trained on the same
10% data of ScanNet, which indicates that our model is more flexible when
transferred to a moderate dataset.

3 Outdoor Pose Estimation
Qualitative Comparisons. As shown in Fig. 2, we visualize the qualita-
tive comparisons of the outdoor model at MegaDepth [4]. In outdoor scene
matching, MatchFormer-large-LA outperforms LoFTR and SuperGlue in match-
ing performancec. The matching performance of MatchFormer-lite-SEA and
MatchFormer-lite-LA are on par with that of LoFTR and SuperGlue.

4 Homography Estimation
Qualitative Comparisons. To evaluate the feature matching in the bench-
mark for geometric relations estimation, we perform Homography Estimation
on HPatches [1] with the MatchFormer-large-LA. In Fig. 3, we visualize more
qualitative comparison based on the matching results of MacthFormer-large-LA,
LoFTR [6], and SuperGlue [5]. MatchFormer can perform more dense and confi-
dent matching than SuperGlue. Besides, MatchFormer has further improvements
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Fig. 1. More Qualitative Comparisons in Indoor Scene Matching of Match-
Former, LoFTR, and SuperGlue. The color represents matching confidence, where
green represents more correct matches, and red represents uncertain matches. Mod-
els (10%) represent indoor models trained on 10% of the ScanNet dataset [2].
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Fig. 2. More Qualitative Comparisons in Outdoor Scene Matching of Match-
Former, LoFTR, and SuperGlue. The color represents matching confidence, where
green represents more correct matches, and red represents uncertain matches. lite rep-
resents the model outdoor model for outputting low-resolution matching feature maps.
LA represents linear attention. SEA represents spatial efficient attention.
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Fig. 3. Qualitative Comparisons on HPatches.
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Fig. 4. Qualitative Comparisons on InLoc.

by yielding more matches compared to LoFTR, such as an improvement with
more than 4.5K matches in the first column of Fig. 3.

5 Image Matching
Following the experimental setup of Patch2Pix [9], we choose the same 108
HPatches sequences, including 52 sequences with illumces with viewpoint change.
Each sequence contains six images. To match the first with all others, we report
the mean matching accuracy (MMA) at thresholds from [1,10] pixels, and the
number of matches and features. The input size of the image is set to 1024, the
matching threshold is set to 0.2, and RANSAC threshold as 2 pixels.

6 InLoc Visual Localization
Detailed Settings. On the InLoc [7] benchmark, we follow Patch2pix [9] to
evaluate the same first 40 retrieval pairs. The same temporal consistency check
is performed to limit the retrievals, and the RANSAC threshold is set to 48
pixels for pose estimation. We adjust the images to 1024 on the long side.
Qualitative Comparisons. To evaluate the effectiveness of MatchFormer in
the visual localization task, we evaluate MatchFormer-large-LA on the InLoc [7]
benchmark. The visualizations of InLoc visual localization results can be found in
Fig. 4. In comparison to the detector-based MatchFormer method, MatchFormer
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has a greater and more accurate number of matches. MatchFormer performs at
a level comparable to the detector-free method LoFTR.

7 Limitations and Future Work
For indoor scenes and outdoor scenes, MatchFormer employs two kinds of at-
tention, i.e., spatial efficient attention (SEA) and linear attention (LA), which
have varying degrees of computational reductions and different abilities for fea-
ture extraction. They are appropriate for either indoors or outdoors. In our
experiments, LA proved to be more suitable for outdoor scenes with dense high-
resolution input. In contrast, SEA was more appropriate for indoor scenes with
sparse low-resolution input. Exploring a uniform efficient attention module to
handle both indoor and outdoor inputs with different resolutions, we leave it as
the future work. Besides, in MatchFormer, we introduce an efficient FPN-like
decoder that can combine match-aware feature maps generated by interleaving
attention. It is potential to adapt an alternative decoder to the feature fusion
task, such as MLP-decoder.
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