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A Overview

We report additional results in Section B including on the reconstruction task
(Section B.1) and when using augmentations for downstream tasks (Section B.5).
We visualise additional learned augmentations (e.g. brightness, saturation and
rotation) in Section B.5 and give additional visualisations of the cropping aug-
mentation. We also provide a video comparing our compressed representation to
that of MPEG and visualising our learned augmentations.

We provide a more comprehensive study on the speed of various components
of our setup in Section B.6 and additional information about the datasets in
Section C. Section D has a more detailed exposition on WalkingTours – our new
dataset and task for handling very long video sequences. Finally, we put together
a more detailed description of our models in Section E, including how we apply
S3D on our neural codes (Section E.1) as well as information about the other
architectures, the precise hyperparameter sweeps we consider (Section E.3) and
training details (Section E.4).

B Additional Results

B.1 Reconstructions at Various Compression Rates

We expand the results from the main paper with reconstruction performance
at various compression rates in Table 5. As before, we can see that at the
same compression rate, the reconstruction performance using JPEG encodings
degrades much more quickly than when using our neural codes; for instance,
we can compress inputs four times more using our neural compression than the
JPEG compression.

B.2 Compression Trade-offs

In addition to our main results, we have also experimented with various hyper-
parameters, showing different trade-offs.
Space- vs Time-compression. Alternatively to downsampling spatial resolu-
tion (space-compression) we could also downsample temporal resolution (time-
compression). For that purpose, we use temporal striding in convolutional kernels.
To keep the same compression rate, CR 236, we use the following setup. In
space-compression, we compress 32-frames long video with the spatial resolution
256 � 1H � 256 into a tensor of shape: 32 ⇥ 16 ⇥ 16 ⇥ 2 (time x width x height x
number of vocabularies). In time-compression, we compress the same video into a
tensor of shape: 4 ⇥ 32 ⇥ 32 ⇥ 4 (time x width x height x number of vocabularies).
Space-compression yields the SSIM score 89.3, whereas time-compression 89.8.
Both results are comparable though there are small qualitative differences in the
decoded videos for individual videos.
Codebook size vs number of codebooks. VQ-VAE [42] uses a fixed number
of codes in a single codebook. Here, for a fixed compression ratio, we can either
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Table 5: Reconstruction error for neural codes. Additional results. We
compare our approach to using JPEG encodings of the frames. We report three
standard reconstruction metrics (PSNR, SSIM and the mean absolute error
(MAE)) for training on Kinetics600 at different compression rates (CRs). For
MAE, lower is better whereas for PSNR and SSIM [62], higher is better.

Kinetics600

PSNR " SSIM " MAE #
JPEG CR⇠30 36.4 94.1 0.013

JPEG CR⇠90 25.1 70.2 0.045

JPEG CR⇠180 22.5 63.1 0.057

MPEG CR⇠30 33.2 89.6 0.034

MPEG CR⇠90 38.7 82.4 0.026

MPEG CR⇠180 23.7 67.3 0.054

CR⇠30 38.6 97.6 0.008

CR⇠90 34.8 94.8 0.013

CR⇠180 32.6 92.3 0.016

CR⇠236 30.8 89.8 0.019

CR⇠384 30.0 88.4 0.019

CR⇠768 29.0 85.4 0.022

increase number of codes in a single codebook or use different codebooks. Note
that, if we decide to increase the number of codebooks twice, we are free to
increase the number of codes quadratically as

2A =
�) �� �, ⇤ 3 ⇤ log2 256
)))�), (2)⇠ ) log2  

=
�) �� �, ⇤ 3 ⇤ log2 256
)))�),)⇠ log2  2

where 2A is the compression rate, �� , �, are spatial resolutions for each frame,
�) is the number of frames in a single video, )))� ,), denotes the shape of the
compressed spatio-temporal tensor, )⇠ is the number of codebooks and  is the
number of codes in each codebook (we need to store indices to these codes). Even
though compression rates are the same, we found that it is better to increase the
number of codebooks at the cost of fewer codes per codebook. That is, a single
codebook with 65k codes gives worse results than two codebooks, with 256 codes
each. The corresponding SSIM scores are 86 and 88.

B.3 Using Compressed Representations versus Reconstructions

In the paper, we train downstream tasks directly using the neural codes. However,
at the cost of significant speed loses as shown in Section B.6, we could take the
neural codes, pass them through the generator 2�1 and obtain the reconstructed
images. This generation / reconstruction process is akin to the decompression
process in standard (non-neural) codecs. We could then use these reconstructed



Compressed Vision 3

images to train the downstream tasks. In Table 6, we compare the performance
between using the neural codes and reconstructed images on Kinetics600. We
find that there is a small drop in performance between using the neural codes
and reconstructed images. This demonstrates that if the representation better
captures the full image, we would expect improvements in performance (i.e. the
drop in performance is not from the compression itself but from the quality of
the learned representation).

Table 6: Downstream classification accuracy on Kinetics600. Additional
results. We compare using the neural codes directly versus using the reconstructed
images. We report Top-1 accuracy on K600 when using neural codes trained on
either K600 or WalkingTours. We experiment with different levels of compression
(different compression rates (CRs)). CR⇠1 denotes the upper bound of using the
original RGB frames. Using the neural codes as opposed to the reconstructed
images leads to a minor drop in performance ( 1%), demonstrating that improving
the quality of the representation would directly improve performance.

K600 WalkingTours

CR Top-1 " CR Top-1 "
Original images

CR⇠1 73.1 CR⇠1 73.1

Reconstructed images

CR⇠30 71.2 CR⇠30 72.8

CR⇠475 69.0 CR⇠256 71.4

Neural codes

CR⇠30 72.2 CR⇠30 71.3

CR⇠475 68.2 CR⇠256 68.4

B.4 Transferability of Augmentations

Here, we consider whether the learned augmentations are transferable. That is,
can we train the neural compressor and augmentation network on one dataset and
evaluate it on another? We compare the flipping and cropping transformations
when the neural compressor and augmentation network are trained on Walking-
Tours or Kinetics600. Note that in the main paper, the neural compressor was
trained on WalkingTours and the augmentation network on Kinetics600. As can
be seen, using either the flipping or cropping augmentation, we improve over the
baseline setup that does not use learnt augmentations. This is valid even if the
neural compressor and augmentation network are trained on different datasets
than the classification model (which is trained on Kinetics600). Pre-training
both the neural compressor and augmentation network on the same dataset as
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the classification network sometimes improves performance, but the difference
between setups is marginal. We did experiment with augmentations at larger
compression rates but found that the results did not improve over the baselines;
future work should explore how to learn augmentations at larger compression
rates.

Table 7: Using our learnt network for augmentation. We report Top-1
accuracy on K600. We compare training the neural compressor (C) and augmen-

tation network (A) on the same or different datasets than what the classification
network is trained on. For each group, we bold the best setup that improves over
the baseline setup (which uses no learned augmentations). As can be seen, we can
train the augmentation network on WalkingTours, Kinetics600, or a combination
thereof and still improve on the original neural compressor.

Num of temporal clips

Crop Size 1 2 4 8

224 central crop 224 60.6 62.1 67.8 69.6

224 NN Crops (4 spatial crops) [44] 224 60.7 63.0 68.1 69.0

256 central crop 256 60.8 62.4 68.2 68.9

C: WalkingTours, A: Kinetics600

Ours (2 spatial crops) 224 61.6 64.1 69.1 70.1

Ours (3 spatial crops) 224 61.3 63.9 68.9 69.6

Ours (4 spatial crops) 224 61.9 64.4 69.3 69.6

Ours (with flipping at train) 256 61.7 64.4 68.5 70.0

Ours (with flipping at train and eval) 256 62.9 65.2 69.0 70.2

C: WalkingTours, A: WalkingTours

Ours (2 spatial crops) 224 61.2 64.1 69.2 69.2

Ours (3 spatial crops) 224 61.5 64.7 69.5 69.5

Ours (4 spatial crops) 224 61.5 64.8 68.9 69.5

Ours (with flipping at train) 256 61.8 63.9 68.3 69.5

Ours (with flipping at train and eval) 256 62.6 65.1 69.3 70.4

C: Kinetics600, A: Kinetics600

Ours (2 spatial crops) 224 61.3 62.9 68.3 69.3

Ours (3 spatial crops) 224 61.3 63.2 68.3 69.2

Ours (4 spatial crops) 224 61.6 63.6 68.2 69.3

Ours (with flipping at train) 256 62.9 64.1 70.1 70.8

Ours (with flipping at train and eval) 256 63.5 64.7 70.0 70.4
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B.5 Extra Augmentation Visualisations

Cropping augmentation. We give additional visualisations of the cropping trans-
formation in Figure 7. For a single image, we visualise four crops when that crop
is applied (a) to the original image, (b) to the reconstructed image using our
encoder-decoder network and (c) using our augmentation network applied to the
neural codes. As can be seen, there is minimal difference between the crops using
our augmentation network and the original image.

Brightness augmentation. In this work, we mainly focus on learning transforma-
tions of the latent space for the purpose of augmentations, and thus, we focus on
the most common ones. However, we can also learn other transformations such
as changes in brightness, as shown in Figure 6 for three videos at two brightness
extremes. We have not found this transformation to improve performance of the
classification models, so we show it here mainly to illustrate how our method is
general. Note that, unlike when cropping, we cannot apply such a transformation
by just manipulating neural codes (as in [44]).

Figure 8 compares the results for multiple videos. For a single image, four
different amounts of brightness are applied. As in Figure 7, we visualise results
when the transformation is applied to (a) the original image, (b) the reconstructed
image using our encoder-decoder network and (c) using our augmentation network

applied to the neural codes. Again, there is minimal difference between the results
using our augmentation network and the original image.

Other challenging transformations. Figure 9 shows other challenging transforma-
tions: rotations and changes in saturation. We see that the augmentation network

can successfully learn such transformations.

Naive flips. Finally, many transformations operating in the compressed space
cannot be easily constructed. For instance, to flip frames in the video, we cannot
flip the codes as every individual code, which corresponds to a spatial region,
needs to also be flipped. Naively performing this operation leads to problematic
artifacts after decoding as shown in Figure 10.
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Fig. 6: Learned augmentation: Brightness. The top row shows the original
frames for three videos; the bottom two rows show these frames after applying
our equivariant network for brightness at two extremes.
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Fig. 7: Learned augmentation: Cropping.
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Fig. 8: Learned augmentation: Brightness.
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Fig. 9: Learned augmentation: Rotations and Saturation. Here, we show
other, more challenging transformations. The top row presents the original video
frames, middle row shows rotations whereas the bottom row saturation.

Original

Naive Flip

Fig. 10: Naively flipping neural codes leads to strong artifacts after decoding.
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B.6 Time Measurements

The compressed vision pipeline not only benefits from memory reduction, but
also offers some speed gains. For instance, at compression rates of at least 256,
we observe about 58% reduction in the inference time compared to using the
RGB-valued inputs (assuming we only measure the speed cost of the classification
network). We do not observe speed gains at lower compression rates, such as 30.

Table 8 gives detailed time measurements for the video inputs with 32 frames.
More specifically, we measure the encoding and decoding times of our neural

compressor as well as the augmentation time with our augmentation network.
We also show the time measurements of the augmentation network together
with the inference of the Kinetics model (augment & infer in the table). This is
the most typical setting in our pipeline. This is because encoding can be done
once in practice to store intermediary representation. Similarly, decoding is also
not required in our pipeline, as we operate directly on the neural codes. This
contrasts with standard vision pipelines that require decoding, and as we can
see in Table 8, neural decoders incur a significant cost to the overall speed. Even
JPEG decompression of a video with 32 frames, for the 30x compression rate
and batch size 1 takes about 0.022s, which is slower than working directly with
neural codes. Thus, it is more efficient to avoid this step, and to perform the
required computation in the compressed space. Note that decoders are often
implemented using larger networks than encoders. In contrast, our augmentation

network is a relatively shallow network, described in Section E.1; this makes the
whole pipeline efficient.

B.7 Comparison to Other Methods

Here, we further discuss how our pipeline compares with other methods. We
summarize these findings in Table 9. Other methods [1, 9, 35, 48, 65] operate
directly on encoded frames (e.g. I-Frames, P-Frames, and/or residuals) or may
use additional motion vectors that are either learned or obtained from an MPEG
representation. That often requires devising new architectures; [35] needs to add
extra lateral connections that fuse two pathways at different frame-rates, and [48]
trains a flow together with the downstream task.

While [9, 65] use standard architectures (e.g. YOLO [46] or ResNets [27]),
they require a large amount of engineering complexity in manipulating the MPEG
codes into an appropriate input modality ([9] partially decode the MPEG codes in
order to perform pixel-level predictions), whereas we directly use our compressed
codes with no further data engineering. Moreover, [65] applies different models
to different compressed representations yielding a codec-specific architecture.

Our compressed vision setup uses standard video architectures without re-
quiring the development of an entirely new pipeline and we operate directly on
the compressed codes with no further data engineering, and in a task-agnostic
way. We also show how to perform augmentations directly in the compressed
space. Moreover, in Section 4.2, we find that our compression method performs
better than MPEG at different compression rates; thus showing the need for
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Table 8: Speed measurements. We report the inference time of the classi-
fication network, the encoding / decoding time of our neural compressor, the
augmentation time of our augmentation network, and the overall time of the
combined augmentation and inference (augment & infer). We report, in seconds,
time averaged over 100 runs. The standard deviation is marginal in all cases.
We use Tesla V100. We use batch size 8 for RGB and compression rate 256 to
better utilize vectorized computations, and batch size 1 for compression rate 30
as otherwise we run into memory issues (column BS for batch size). CR denotes
different compression rates.

Measurement BS CR Time

Inference (rgb) 8 1 0.089

Inference (codes) 8 256 0.052

Encoding 8 256 1.894

Decoding 8 256 3.076

Augmentation 8 256 0.078

Augment & infer 8 256 0.129

Encoding 1 30 0.816

Decoding 1 30 1.328

Augmentation 1 30 0.080

Augment & infer 1 30 0.102

trainable codecs. As our work is not MPEG specific, it could potentially benefit
from better compressed representations.

C Datasets

Here, we provide more information about the datasets.

Kinetics600 consists of short video clips downloaded from YouTube. The task is
to predict which action corresponds to a given video, which is formalized as a
classification problem (out of 600 classes) given the whole video. However, these
clips are up to 10 second long, and most video models are trained on about 2
second long clips at 25fps. Kinetics 600 has about 400k video clips for training
purpose, and 100k video clips for evaluation, with less than 60 days of total video
time. Nonetheless, it is a popular benchmark in the research community, and
even though our compressed vision framework is not essential, it can still make
the whole training time much more efficient.

COIN consists of relatively long video clips of the order of a couple of minutes;
on average 2 minutes and 36 seconds. The dataset has 476 hours of total video
time. These are instructional videos with annotations per frame describing the
task being shown in the frame. It has about 12k video clips. We evaluate our



12 O. Wiles et al.

Table 9: Comparison of our pipeline to other methods. We compare whether each
method uses an MPEG style codec (e.g. I-Frames or Blocks from that representa-
tion), a flow (optical flow, motion vectors, or their approximations), or whether
the method leverages standard video pipelines (existing popular architectures
and augmentations). Some methods operate on MPEG style representations.
Thus they require new architectures, training schemes, or data engineering. In
contrast, our pipeline can directly be used with the existing video architectures,
and we can train the corresponding augmentations. Finally, other approaches
rely on an MPEG style representation that lead to worse representation at higher
compression rates to ours as demonstrated in Section 4.2.

Method no MPEG no flow standard pipelines

Alizadeh et al. [1] 7 7 7
DMC-Net [48] 7 7 7
Li et al. [35] 7 7 7
Wu et al. [65] 7 X 7
Chen et al. [9] 7 X X
Ours X X X

approach on its ability to perform per-frame annotations as opposed to per-video
classification as in Kinetics600.

WalkingTours. As we could not find any dataset containing sufficiently long videos,
we decided to collect our own dataset as a proof of concept showing the utility of
our proposed pipeline. The dataset consists of one-hour long videos of tourists
walking in different places, and it poses various challenges for sampling and
processing very long video sequences. These include high memory requirements
for storage, high bandwidth, distributed and asynchronous requirements for
sampling data and sending them to device, and high memory consumption on
a device like GPU due to processing very large volumes of data points. Before
even defining the right task on long video understanding, first these challenges
above should be addressed.

The dataset has about 18k videos, with 1815 videos used for validation and
the same number for a held-out test; the rest is the training set. The videos
range in length from 18 minutes to ten hours; on average 40 minutes. In total,
the dataset amounts to around 500 days worth of accumulated video time. It
is significantly more than the number of days of accumulated video time in the
latest Kinetics dataset [31] and other egocentric datasets [10, 11, 22]. However,
WalkingTours has no human annotations, and currently it is only compatible
with self-supervised or unsupervised training or evaluation.

D Walking Tours: Task and Components

Description. WalkingTours is a dataset of very long, even one-hour long, videos.
In the current form, it is also a purely visual dataset, i.e. there are no extra
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annotations associated with it; hence, models can only be trained and evaluated
in an unsupervised way. For this purpose, we have proposed a continual setting,
where hour-long videos are split into many 5s-long video clips that the model
observes in sequence, one by one. All these short clips belong the the same
video, which is continuous (has no cuts), and we call them chunks. At each step,
whenever the network sees a new chunk, we randomly sample a chunk from
anywhere in the whole video and pass it to the network as a query. This clip
might belong to the part of the video that the network has already seen, i.e.
its past, or a part that has not been yet observed, i.e. its future. We name our
task Past-Future, and illustrate the whole setup in Figure 11. As can be seen,
to solve this task, the network can use memory of the past events. To avoid
pure memorization, we always randomly and spatially crop the clips, so that the
query is almost surely different than the past chunks. For training, we only do
backpropagation over these chunks individually, and aggregate all such gradients
together for the update step. In the following, we describe all the components,
memory, adapter, core and predictor, that we use in our experiments on this task.

Memory. Our task requires efficient memory usage. Here, we investigate that
angle by comparing LSTM, Slot and using no memory (none). A network without
memory needs to respond to visual stimuli reactively, based only on the current
observations. In our task, such network should perform at random chance (50-
50), which is confirmed experimentally (52.9%). LSTM is the most popular
recurrent neural network, equipped with gating operations that enable long
short-term memory usage [28]. Although LSTMs work well with shorter video
sequences [13, 32, 36, 51, 53], working with longer videos become more problematic
due to interference [2, 20, 21, 37]. This is also the case here. The network is only
able to learn the following simple strategy. On the question if the query is in
the past, it answers negatively for the first half of the video, and positively for
the second half of the video. Note that, after observing almost the whole video
the answer is very likely positive. This simple strategy yields 78.2%. Slot is an
external memory unit [23, 41, 63, 64] that can explicitly store past representations.
In our study, we employ a deterministic writing operation, where a new memory
is added to old memories whenever chunk C is observed, i.e., MC+1 := {mC } [MC .
MC represents all the slots at time step C. The reading operation is learned using
a specialized neural network. The network equipped with the slot memory can
solve the task on the half-an-hour long video understanding (99.5%).

Adapter. Adapter is a shallow 3D CNN that operates on a chunk creating
the task-specific representation. It also reduces the dimensionality of the input.
The same as other our experiments, chunks are already neural codes. Without
compressing the inputs into such representations, it became challenging to even
sample data points and transfer them through a bandwidth-limited network.

Core. It is a neural network that interacts between queries and memories. Here, we
experiment with a cross-source transformer, which uses the query as a transformer-
query @ and memory elements as transformer-key : and -values E – adopting
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Fig. 11: Our online learning framework. We use the same colours to indicate
weights sharing. Here, the query comes from the future.

naming convention from the transformer literature [58] – or it can also be seen
as an asymmetric variant of a cross-modal transformer [57]. Note that, although
standard transformer operate on the whole input sequence, here, the memory is
a bottleneck between the input signal and the transformer. Moreover, due to the
asymmetry, the network’s cross-attention scales better than pure attention to
longer sequences.

Predictor. It is a single linear layer that outputs a scalar describing whether the
query is in the past or future. Overall, to train networks on very long videos,
we need to trade-off the network’s complexity with its capacity. Thus, we use
relatively simpler architecture like a shallow 3D CNNs in Adapter.

E Modelling

This section discusses architectures and training protocols in more detail. In par-
ticular, we describe the recognition architecture, architectures used to implement
neural compressor and augmentation network, and our hyper-parameters.

E.1 Architecture

S3D. As compressed embeddings have smaller spatial dimensions than the
RGB-valued inputs, we adapted the striding values of the S3D architecture so
that the shapes of the internal tensors, between models operating on RGB and
neural codes, are roughly the same. Figure 12 reproduces Figure 6 from [66];
it shows how the S3D architecture is applied to a standard video input. We
then show the modifications to the strides and output channels that we use in
S3D when operating on neural codes at CR⇠ 30 in the main paper; we visualise
these changes in Figure 13. Figure 14 visualises the changes if we have a larger
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compression rate and obtain codes that have a width and height of about one
eighth the size of the original image. We use this setup for CR⇠ 256 and CR⇠ 475
in the main paper. In general, applying S3D to our neural codes requires only
a few small changes: modifying the strides of the input convolution and some
of the max pool layers as well as modifying the output channels of the first two
convolutional layers.
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Fig. 12: S3D. Reproduction of Figure 6 from [66]. This shows how the standard
S3D architecture is applied to a video. Note that we show the result after first
applying a space to depth transformation to the input. Below each layer, we
write the size of the output tensor for the given input size.
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Fig. 13: How we modify the standard S3D architecture for smaller
compression rates.. Below each layer, we write the size of the output tensor
for the given input size. In comparison to Figure 12, we only change the strides
of the first convolution, the first two max pools and modify the output channels
in the first two convolutional layers.
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Fig. 14: How we modify the standard S3D architecture for larger com-
pression rates.. Below each layer, we write the size of the output tensor for the
given input size. In comparison to Figure 12, we only change the strides of the
first convolution, the first three max pools and modify the output channels in
the first two convolutional layers.
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Encoder-Decoder. The actual setup of the two components of the architecture
is given in Table 10. Note that in order to generalise to different numbers of
frames, we have to reflect the tensor at the boundary when padding (as opposed
to padding with zeros).

Encoder 2. The encoder consists of ⇢B ResNet blocks that make the resolution
smaller. This is followed by ⇢2 ResNet blocks that maintain the spatial resolution
size.

Decoder 2
�1

. The decoder consists of ⇡2 ResNet blocks that maintain the spatial
resolution size. This is followed by ⇡B ResNet blocks that increase the resolution
to the original image resolution size.

Quantized embeddings. To create quantized embeddings, we take the +4 channels
and split them into # codebooks. These are the embeddings we use to perform
nearest neighbours and find the corresponding embedding in embedding space.

Augmentation network. Our augmentation network has two main components:
MLP and Transformer.

MLP. The MLP takes the input augmentation conditioning values, e.g. describing
bounding box coordinates or brightness values or whether flipping happened,
which are flattened to form a single vector; these are passed to three hidden
layers of size 64. The output is a vector with the same number of channels as
the neural code. We broadcast the embedding from the MLP along the spatial
dimensions and concatenate it with the neural code to give a tensor with double
the size of the latter.

Transformer. The transformer takes as input the concatenated tensor. The
transformer has two hidden layers of size 128, 4 heads and uses an absolute
positional embedding.

E.2 VQ-VAE and Compression Rates

With the VQ-VAE encoding-decoding scheme, we can indirectly control com-
pression rates as follows. First, we use 3D CNNs with !2 layers that downscale
spatial dimensions of the input tensor �8 ⇥,8 to form a tensor of shape �2 ⇥,2.
As we are using striding two, new dimension �2 is 2!2 times smaller than the
corresponding dimension of the input frame. We do not compress along the time
dimension. As we are using #2 codebooks, the neural codes form a tensor with the
shape �2 ⇥,2 ⇥#2. Each element of such a tensor is a discrete number indicating
which embedding in the corresponding codebook is used for the reconstruction.
The larger codebook, the more bits per such an element are needed. Thus the
final compression ratio is: 2A = �8⇥,8⇥3⇥log2 (256)

�2⇥�F⇥#2⇥log2 ( 2) where  2 is the number of the
codebook’s elements.
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Table 10: Model Architecture. The model architecture of the encoder-decoder
models for an input video with � frames of size �,, ,⇠ (⇠ may be greater than 3
if we are using spatio temporal crops). B denotes stride while : denotes the kernel
size. >2 denotes the number of output channels and 8 the block index within the
group.

ID Output Size Block

Encoder � ⇥ �2 ⇥,2 ⇥+4

8>>>>>><
>>>>>>:

Conv3D

B = (1, 2, 2)
: = (4, 4, 4)

>2 = +4/2⇢B�8�1

ReLU

9>>>>>>=
>>>>>>;
G⇢B

Encoder � ⇥ �2 ⇥,2 ⇥+4

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Conv3D

B = (1, 1, 1)
: = (3, 3, 3)
>2 = 4+4
ReLU

Conv3D

B = (1, 1, 1)
: = (3, 3, 3)
>2 = +4
ReLU

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

G⇢2

Decoder � ⇥ �2 ⇥,2 ⇥+4

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Conv3D

B = (1, 1, 1)
: = (3, 3, 3)
>2 = 4+4
ReLU

Conv3D

B = (1, 1, 1)
: = (3, 3, 3)
>2 = +4
ReLU

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

G⇡2

Decoder � ⇥ � ⇥, ⇥ ⇠

8>>>>>><
>>>>>>:

Conv3DTranspose

B = (1, 2, 2)
: = (4, 4, 4)
>2 = +4/28

ReLU

9>>>>>>=
>>>>>>;
G(⇡B � 1)

Decoder � ⇥ � ⇥, ⇥ ⇠

8>>>><
>>>>:

Conv3DTranspose

B = (1, 2, 2)
: = (4, 4, 4)
>2 = ⇠

9>>>>=
>>>>;
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E.3 Sweeps

In order to choose the best hyperparameters for the compression architecture we
swept over the following model choices. For a given setup, we chose the set of
hyperparameters with the best performance on the validation set.

Encoder-decoder architecture

Input transformation. First, we swept over the type of spatio temporal patches.
We considered two setups: we can either use the original shape of the tensor
or we can reshape the tensor by dividing it into temporal and spatial crops.
We considered either using the original video shape or dividing the video into
four spatial crops and concatenating along the channel dimension. However, we
found that taking further crops in either the spatial or temporal dimension hurt
performance substantially, so did not investigate further.

Architecture size. We swept over the number of encoder ResNet blocks ⇢B (we
considered [3, 4, 5]) and corresponding decoder ResNet blocks ⇡B (again [3, 4,
5]) that change the final spatial size of the embedding. We also swept over the
number of intermediary ResNet blocks ⇢2,⇡2 in the encoder and decoder (we
swept over using [3, 5, 7] blocks for both). Here, we found as in [38], that using
more decoder blocks improves reconstruction performance (as opposed to more
encoder blocks).

Codebook. We swept over the number of codebooks (we considered one or two),
the number of embeddings in the codebooks (we consider [256, 512, 1024, 4096,
8192]) and the size of those embeddings (we consider embeddings of size [128,
256, 512]).

Training parameters. Finally, we swept over the learning rate when training the
encoder-decoder model. We considered learning rates [3e-4, 1e-5] and used an
SGD optimizer.

Augmentation Network

MLP. We swept over the number of hidden dimensions and the size of those
dimensions: we considered [[128], [128, 128], [64, 64, 64]]. In general, we found
using more hidden layers performed better.

Transformer. We swept over the number of heads ([1, 4]) and the size of the
intermediate representation ([128, 256]). In general, these choices did not make a
large difference in the results.

E.4 Training.

Our pipeline consists of three training stages, which we detail below.
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Neural compressor. The neural compressor was trained until convergence on
either the Kinetics600 or WalkingTours dataset. To chose the best configuration
of parameters, we swept over the hyperparameters (as described above) and
selected the one with the best reconstruction loss on the validation set. The
precise sweeps are given in Section E.3.

Augmentation network. The augmentation network was trained until con-
vergence using a learning rate of 0.001, the Adam optimizer and no weight
decay.

Downstream training. Finally, the downstream networks were trained using
the Adam optimizer with cosine decay and an initial learning rate of 0.5 and
weight decay of 1e�5. The models were trained for 60 epochs on COIN and 135
epochs on Kinetics600.
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