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Summary of content: In Sec 1, we show some details of our network struc-
ture. In Sec. 2, we begin with the statistical information of our dataset. Then we
illustrate the error calculation of stereo camera, the data acquisition process and
some examples in our dataset. In Sec. 3, we report the underflow problem en-
countered during training and give a solution. Besides, we report ablation studies
about more aspects. Finally, we describe in detail the training/validation/test
setting for experiments on KITTI.

1 Network Details

1.1 LiDAR Completion Branch

We summarize the detailed layer-by-layer LiDAR completion branch configura-
tions in Table 1.

1.2 Mixture Density Module

We summarize the detailed layer-by-layer mixture density module configurations
in Table 5.

2 Livox-stereo Dataset Details

2.1 Statistics of Subsets

Our dataset contains both indoor and outdoor scenes in residential areas. We
split the dataset into train, validation and test subsets at a ratio around 7:1:2.
The specific statistics of the subsets is in Table 2.
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Table 1. Structure details of the LiDAR completion branch. H, W represent the
height and the width of the input image. k is the index of the hourglass. S2 denotes a
convolution stride of 2. If not specified, each convolution is with a batch normalization
and ReLU. ∗ denotes the batch normalization is not included. ∗∗ denotes convolution
only.

Name Layer properties Output size

Image Feature Conv

conv 0 Gref [0]: 3×3 Conv H/2×W/2× 32
conv 1 Gref [1]: 3×3 Conv H/4×W/4× 32
conv 2 Gref [2]: 3×3 Conv H/8×W/8× 32
conv 3 Gref [3]: 3×3 Conv H/16×W/16× 32

Basic Depth Hourglass

conv d 0k* Ds: 3×3 Conv H/2k ×W/2k × 32

conv d 1k* 3×3 Conv H/2k ×W/2k × 32

conv d 2k* 3×3 Conv S2 H/2k+1 ×W/2k+1 × 32

conv d 3k* 3×3 Conv H/2k+1 ×W/2k+1 × 32

conv d 4k* 3×3 Conv S2 H/2k+2 ×W/2k+2 × 32

conv d 5k** 3×3 Conv H/2k+2 ×W/2k+2 × 32

conv u 0k* conv d 5k+conv (k+2): 3×3 Deconv S2 H/2k+1 ×W/2k+1 × 32

conv u 1k* 3×3 Conv H/2k+1 ×W/2k+1 × 32

conv u 2k* conv u 1k+conv (k+1): 3×3 Deconv S2 H/2k ×W/2k × 32

conv u 3k* 3×3 Conv H/2k ×W/2k × 32

conv u 4k* 3×3 Conv H/2k ×W/2k × 32

conv u 5k** 3×3 Conv H/2k ×W/2k × 1

Table 2. Dataset splits

Subset Train Val Test Total

Indoor 86 13 24 123
Outdoor 268 40 76 384

Total 354 53 100 507

2.2 Error Calculation of Stereo Camera

In a binocular system, B is the length of baseline (the distance between two

cameras) and f is the focal length (unit: pixel). Let d̂ be the predicted disparity

and D̂ be the corresponding depth value. The relationship between D̂ and d̂ can
be formulated as

D̂ =
B · f
d̂

. (1)

Supposing there is a deviation △d̂ in disparity d̂, the corresponding depth D̂
will have a deviation △D̂. Then Eq. 1 can be further formulated as

D̂ +△D̂ =
B · f

d̂+△d̂
. (2)
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Fig. 1. Illustration of our data acquisition process.

Substituting Eq. 1 into Eq. 2, we can get the relationship between △d̂ and △D̂

△D̂ = D̂− B · f
d̂+△d̂

= D̂− 1

d̂
B·f + △d̂

B·f

= D̂− 1

1
D̂

+ △d̂
B·f

= D̂(1− 1

1 + △d̂·D̂
B·f

), (3)

where B and f is determined by the binocular system. In our case, B · f is
about 230 (unit: meter · pixel). Suppose that there is one pixel error in stereo
matching, in other words, given △d = 1 pixel. We can find that △D̂ increases
with the increase of D̂. It is easy to get from Eq. 3 that in our system, when
depth D̂ is within 3 meters, depth error △D̂ is less than 4 centimeters.

2.3 Data Acquisition Process

The data acquisition process of our dataset is illustrated in Fig. 1. Stereo images
were collected by rectified stereo camera. For the sake of simplicity, only the ref-
erence figure (captured by the camera below) is shown in Fig. 1. Depth maps are
formed by projecting point clouds collected by Livox LiDAR onto the reference
image plane. For dense depth maps, we projected point clouds accumulated in
3 seconds, and for sparse depth maps, we projected point clouds accumulated
in 0.3 seconds. Note that Livox has a a conical shaped FoV spanning 70.4° and
therefore cannot cover the whole image area. Besides, there is a rolling shutter
effect when collecting data in dynamic scenes. Rolling shutter is a type of dis-
tortion when there exists relative motion between sensor and objects. LiDAR
sensors will create streaking artifacts along their direction of motion relative
to objects. Considering the long accumulating time, we kept the Livox LiDAR
stationary and only captured static scenes to avoid serious rolling shutter effect.

2.4 Examples in Dataset

In Fig. 2 and Fig. 3, we provide some examples of outdoor and indoor subset
in home-made Livox-stereo dataset respectively. The outdoor subset contains
residential scenes under different lighting conditions.
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Fig. 2. Some examples of the outdoor subset in our Livox-stereo dataset.

3 Experiment Details

3.1 The Underflow Problem

The underflow problem is that computer system tries to represent a number and
this number is too small to be represented by computer. We encountered this
problem when computing the negative logarithm of the likelihood loss. If we
extend the negative logarithm of the bimodal mixture density distribution Pm,
we obtain

− logPm(d) = − log(
α

2bs
e−

µs−d
bs +

1− α

2bl
e
−µl−d

bl ). (4)

Eq. 4 is part of our loss function. There exist lots of situations when we obtain
a very small number and the computer interprets it as absolute zero. These
absolute zero may cause underflow problems when there is a logarithm function
between operations.

To solve the above problem, we use the log-sum-exp trick to eliminate the
numerically unstable behaviour of a logarithm of a sum of exponential expres-
sions

− logPm(d) = −max(xs, xl)− log(exs−max(xs,xl) + exl−max(xs,xl)), (5)

where

xs = log(α)− log(bs)−
µs − d

bs
− log 2, (6)



LSMD-Net 5

Fig. 3. Some examples of the indoor subset in our Livox-stereo dataset.

Fig. 4. Illustration of our data agumentation strategy. To make our model work with
areas without sparse inputs and supervision (yellow dotted area), we dropout sparse
inputs in some patches (red dotted area) randomly to simulate the situation without
LiDAR inputs.

xl = log(1− α)− log(bl)−
µl − d

bl
− log 2. (7)

Besides, we replace the predicted disparity d with d/D to make our model more
stable and easier to converge. D is the maximum disparity value and is set to
192 in our model.

3.2 Random Dropout for data augmentation

Due to the different FoV of LiDAR and cameras, point clouds collected by LiDAR
cannot cover the entire image area. Therefore, in LiDAR-based datasets, there
exist areas without sparse depth input in training data. Meanwhile, these areas
have no dense supervision information. In order to make our model learn to work
with areas without sparse disparity inputs, we randomly dropout some patches
of disparity inputs as data augmentation, which is illustrated in Fig. 4.

We performed ablation study on our Livox-stereo dataset to study the influ-
ence of our data augmentation strategy. Random dropout some patches makes
our model learn to deal with areas missing LiDAR inputs, which is illustrated in
Fig. 5. There is no ground truth in areas without sparse LiDAR inputs, hence
we manually annotated disparities of several points in this areas and report
quantitative evaluation results in Table 3.
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Fig. 5.Qualitative comparison with and without random dropout. (a) and (c) are depth
maps with random dropout training, which performs stable out of Livox coverage. (b)
and (d) fail with no Livox inputs (the dashed area) for being trainned without random
dropout.

Table 3. Comparison with and without random dropout in areas not covered by Livox.

Methods > 3px ↓ EPE ↓ MAE ↓ RMSE ↓

w/o random dropout 60.71 6.92 16.7931 25.94
with random dropout 14.29 1.83 1.5590 2.18

3.3 Standard for selecting weighting parameters in loss function

Our strategy is first focus on two sub-branches separately (ωs, ωl) and then gain
weighting to the mixture module (ωm). Our weighting parameters is selected
according to results on KITTI Depth Completion dataset. Ablation study is
shown in Tab. a

3.4 Details for Evaluations on KITTI datasets

KITTI Stereo 2015 dataset consists of a training set and a testing set for stereo
matching algorithms evaluation. Each sets containing 200 stereo pairs. However,
there is no sparse depth maps in the dataset. KITTI Depth Completion dataset
provides stereo images and sparse depth maps in training and validation sets,
but only monocular images in the testing set. The dataset consists of 42,949
image pairs for training, 3,426 image pairs for validation and 1,000 for testing.

Table a. Ablation study about weighting on KITTI Depth Completion test set.

ωm ωs ωl MAE ↓ iMAE ↓ RMSE ↓ iRMSE ↓

1 0 0 0.2261 0.85 1.0212 2.41
0.2 0.4 0.4 0.2384 0.89 0.9660 2.17
0.6 0.2 0.2 0.2203 0.83 0.9539 2.02

0.1 → 0.1 → 0.7 0.8 → 0.1 → 0.2 0.1 → 0.8 → 0.1 0.2100 0.79 0.8845 1.85
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The sparse depth maps are projected by 3D point clouds collected from 11
consecutive LiDAR sweeps.

We are not able to submit our results on the KITTI Stereo or KITTI Depth
Completion benchmark since our input is different from them. Also, there is no
ground truth in the testing set. Therefore,we evaluated on the training set in
KITTI Stereo 2015 dataset and the validation set in KITTI Depth Completion
dataset. To be specific, for KITTI Depth Completion dataset, we split the vali-
dation set into 1k pairs for validation and another 1k pairs for testing, the scenes
in which are not included in the training set. For KITTI Stereo 2015 dataset, we
evaluate our model on 142 stereo pairs among the training set which are provided
with high-quality disparity maps and are associated with sparse depth maps in
KITTI Depth Completion dataset. The above-mentioned 142 stereo pairs cover
29 scenes in KITTI Depth Completion dataset. Hence, we train our model on
the remaining non-overlapping 32 scenes containing 32, 918 stereo pairs.
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Table 5. Structure details of the mixture density module. H, W represent the height
and the width of the input image. D represents the the maximum disparity value. If
not specified, each convolution is with a batch normalization and ReLU. ∗ denotes
convolution only.

Name Layer properties Output size

conv s 0* Fs: 1×1 Conv H/4×W/4× 512
concat s 0 conv s 1, conv s 2: Concat H/4×W/4× (D/4 + 512)
conv s 1* 1×1 Conv H/4×W/4× 256
concat s 1 conv s 1, conv s 3: Concat H/4×W/4× (D/4 + 256)
conv s 2* 1×1 Conv H/4×W/4× 128
concat s 2 conv s 1, conv s 4: Concat H/4×W/4× (D/4 + 128)
conv s 3* 1×1 Conv H/4×W/4× 64
concat s 3 conv s 1, conv s 5: Concat H/4×W/4× (D/4 + 64)
conv s 4* 1×1 Conv H/4×W/4× 1
upsample s Upsample H ×W × 1
activation s ELU+1 H ×W × 1

conv l 0* Fl: 1×1 Conv H/4×W/4× 512
concat l 0 conv s 1, conv s 2: Concat H/4×W/4× (64 + 512)
conv l 1* 1×1 Conv H/4×W/4× 256
concat l 1 conv s 1, conv s 3: Concat H/4×W/4× (64 + 256)
conv l 2* 1×1 Conv H/4×W/4× 128
concat l 2 conv s 1, conv s 4: Concat H/4×W/4× (64 + 128)
conv l 3* 1×1 Conv H/4×W/4× 64
concat l 3 conv s 1, conv s 5: Concat H/4×W/4× (64 + 64)
conv l 4* 1×1 Conv H/4×W/4× 1
upsample l Upsample H ×W × 1
activation l ELU+1 H ×W × 1

conv f 0 Fs: 3×3 Conv H/4×W/4×D/4
conv f 1 3×3 Conv H/4×W/4×D/4
conv f 2 Fl: 3×3 Conv H/4×W/4× 64
conv f 3 3×3 Conv H/4×W/4× 64
concat f conv f 1, conv f 3: Concat H/4×W/4× (D/4 + 64)
conv f 4 3×3 Conv H/4×W/4× (D/4 + 64)
conv f 5 3×3 Conv H/4×W/4× (D/4 + 64)
conv f 6* Fl: 1×1 Conv H/4×W/4× 512
concat f 6 conv f 5, conv f 6: Concat H/4×W/4× (D/4 + 64 + 512)
conv f 7* 1×1 Conv H/4×W/4× 256
concat f 7 conv f 5, conv f 7: Concat H/4×W/4× (D/4 + 64 + 256)
conv f 8* 1×1 Conv H/4×W/4× 128
concat f 8 conv f 5, conv f 8: Concat H/4×W/4× (D/4 + 64 + 128)
conv f 9* 1×1 Conv H/4×W/4× 64
concat f 9 conv f 5, conv f 9: Concat H/4×W/4× (D/4 + 64 + 64)
conv f 10* 1×1 Conv H/4×W/4× 1
upsample f Upsample H ×W × 1
activation f Sigmoid H ×W × 1


