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1 Technique Details about Adaptive Sampling

There exist several simple methods to control the annotation percentage to a
specific level that we expect. Firstly, we can achieve it at the image-level by
specifying that select the same percentage of pixels to label in each image so that
the percentage of labeling on the entire dataset are controlled at the same ratio.
While the disadvantage of this method is that some images may contain more
outliers that need to be labeled. A straightforward way to solve such a problem
is to use the memory to store all of the pixels, sorted by their uncertainty score.
However, it’s difficult to achieve in practice since it requires a huge memory cost,
and it’s hard to be progressive because of the time-consuming.

To tackle the above issue, in practice, we introduce a sample yet effective way
to adjust πhigh, which is shown in Algorithm 1. In the beginning, we initialize
πhigh with a large value. Then, in each training epoch, if the number of annotated
pixels Ma is still lower than the expected quantity, we decrease πhigh until Ma

achieves the number of expected labeled high uncertainty Me. For example,
assume we set Me equals 5% of total pixels in the target domain. Firstly we
initialize πhigh with a big number, and as a result, only around 1% of samples
are selected as Gh. Then we reduce πhigh, which will lead to the increment in
the size of Gh

3. When the Ma equals to Me/2, which is about 2.5% in our
assumption, we stop selecting samples from Gh. Then we directly select another
Me/2 samples uniformly from Gm for annotation. After that, we stop giving
annotations and only apply predictions to those samples in Gl as their pseudo
labels.

Effectiveness of MCUs. To investigate the effectiveness of MCUs, we fur-
ther use the following two degradation models. (1) AL(w MCUi) indicates the
model that we employ active learning strategy with adaptive sampling to select
⋆ Research done when Hao Zhang was a RA at SRIBD and CUHK,SZ
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3 Note that the size of Gh doesn’t equal Ma, because we only sample half of the pixels

in Gh uniformly to annotate, so the size of Gh equals 2Ma
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GTA5 to Cityscapes
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mIoU
AL(w AS) 96.4 75.7 86.8 40.3 42.0 47.4 46.1 65.4 87.9 44.0 84.3 68.6 44.9 91.5 66.7 72.6 53.9 41.9 64.7 64.3
AL(w p2p) 97.3 76.6 87.5 44.6 43.7 47.6 47.2 66.1 87.4 46.1 83.9 71.3 48.1 91.2 67.3 72.9 55.5 42.6 65.2 65.4
AL(w p2p+c2c) 97.1 77.4 87.8 42.1 43.9 48.1 47.4 65.3 87.4 55.1 82.9 72.1 49.1 91.2 70.4 73.1 55.3 45.7 66.3 66.1
Full Model 97.2 78.3 88.4 46.0 42.9 48.5 48.6 66.5 89.2 54.9 89.3 70.3 49.7 92.1 70.9 72.2 49.0 46.4 67.0 66.7

Table 1. Evaluation of different components of proposed method on GTA5-to-
Cityscapes, with 20% labeled pixels.

annotated pixels and construct image-level contrastive units. (2) AL(w MCUd)
denotes the model that we construct both image-level and domain-level MCUs.
At last, Full Model denotes our entire schemes, which further adds dynamic
categories correlation matrix (DCCM) to the setting. For more ablation studies
about MCUs, please refer to the Appendix.

As shown in Table. 1, firstly, by considering intra-image and cross-image
relations in each domain, AL(w MCUi) achieves a substantial performance
gain, i.e. 1.2%, compared with AL(w AS). Secondly, we investigate the effec-
tiveness of domain-level contrast. AL(w MCUd) in Table. 1 shows a further
performance gain of 0.6%. Finally, we investigate the effectiveness of DCCM by
comparing the results with and without DCCM. After we leverage DCCM to
adjust the weight inside MCUs, we obtain a performance gain of 0.6% (i.e., Full
Model). We could find that the performance of road and sidewalk, which are
always being misclassified, is improved.

As shown in Fig. 1, active learning based supervision in (b) can make the
features of each category being separated, while adding MCUs in (c) can enforce
features from the same category to be more compact and further separated
from the features from other categories. Additionally, the features from some
categories (e.g., the wathet cluster at the top of Fig. 1 (b)) are already separated
from the others. Thus we hope the model paying less attention to such categories,
but paying more attention to those that are not separated well (e.g., the red and
the blue clusters). In practice, combining MCUs with DCCM could well address
such an issue. Just as shown in Fig. 1 (c), the red cluster is well separated
from the blue one. The above visualization results have further demonstrated
the effectiveness of proposed MCUs.

2 Effectiveness of c2c / p2p Contrast

As mentioned in the main article, the AL(w AS) in Table ?? is about the ex-
periment that we implement an active learning selection strategy with proposed
adaptive sampling. AL(w p2p) denotes the method that only calculates pixel-
to-pixel contrastive units in three levels based on the above experiment setting.
AL(w p2p+c2c) indicates the method that we apply both p2p and c2c to con-
struct the contrastive units. Note that AL(w p2p+c2c) has the same setting as
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(a) (b) (c)

Fig. 1. Visualization of features learned (a) by UDA (AdvEnt), (b) using AL selec-
tion policy with adaptive sampling and (c) adding MCUs. 19 classes are reported on
Cityscapes validation set.

AL(w MCUd) that is mentioned in the main article, and the DCCM is not
adopted in such a case.

According to Table. ??, we can see that using pixel-to-pixel contrast, i.e.,
AL(w p2p), can improve the performance by 1.1% compared with AL(w AS).
And further adding center-to-center contrast, i.e. AL(w p2p+c2c), can further
improve performance by 0.7%. Note that the method only uses the center-to-
center contrast but without considering the pixel-to-pixel one could not achieve
desired performance. According to the [38] and [39], a large set of negative sam-
ples is critical for contrastive representation learning. As the number of center
representations in both source and target domain is limited, thus there are not
enough negative samples to be used to calculate the contrastive losses, leading
to poor accuracy. Thus we have not listed the corresponding results in Table ??.

Additionally, we also investigate the effectiveness of pixel-to-center contrastive
loss. However, the result of applying both p2p contrast and p2c contrast shows
limited improvement compared with only adding p2p contrast. After careful
analysis, we think it’s because of the special form of InfoNCE Loss [29] defined
as follows,

LNCE
I = − log

exp(v · v+/λ)
exp(v · v+/λ) +

∑
v−∈N exp(v · v−/λ)

, (1)

where v, v−, and v+ denote the anchor, negative sample, and positive sample.
The operation · denote the vector dot product. N denotes the set of negative
samples. And λ > 0 is a temperature hyper-parameter. When we calculate p2p
contrastive loss using pixels from all three groups (i.e., Gl, Gm and Gh), every
anchor has negative/positive samples not only from Gh, Gm, but also from Gl.
The partial loss from p2p, which is calculated by a specific anchor and its corre-
sponding samples from Gl, seem to have a similar effort to the p2c contrastive
loss. This is because the center representation of each category is aggregated from
the pixels from Gl. As mentioned in the main article, we use those pixels from
Gl (i.e. the low uncertainty group) with high predictive confidence to generate
the category center. Intuitively, high confident samples always lie in the center of
category clusters, leading to a high density. Thus the generated category centers
would have very similar representations to the corresponding pixels in Gl that
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is collected from various images. It contributes limited to further improve the
performance.

Algorithm 1 The training pipeline of proposed ADA-MCU
Require: Labeled source dataset Ds = {(xn

s , y
n
s )}Ns

n=1, unlabeled target dataset
Dt = {xn

t }Nt
n=1, segmentation network F .

Parameter: Parameters of network: θ, number of training epochs: T , budget of ex-
pected annotated pixels in target domain Me, number of already labeled pixels: Ma,
dynamic correlation category matrix W .
Procedure:
1: Use CycleGAN to translate images in Ds to having a similar appearance as target

images following [45].
2: Use Ds to train the segmentation network F .
3: Set epoch variable i = 0.
4: while i <= Ne do
5: Randomly load two images from Ds, and two images from Dt,
6: if Ma < Me/2 then
7: Update πhigh = πhigh × 0.9 and Gh. Select and annotate pixels in Gh.
8: Update Ma as the number of selected pixels.
9: else if Ma == Me/2 then

10: Stop selecting pixels from Gh but select and annotate Me/2 of pixels in Gm.
11: else
12: Sample Me/2 pixels from Gl and using their predictions from F as the pseudo

labels.
13: end if
14: Update W according to the Eqn. (8) in the main article.
15: Calculate segmentation loss and multi-level contrastive losses.
16: Update the network parameters θ and i = i+ 1.
17: end while
18: return θ
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