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A APPENDIX

In this appendix, we first give the pseudo-code and more examples of Text-
Aug in Section A.1. Then, the detailed architecture of ResNet29 which is the
backbone of CMT-Co is shown in Section A.2. Finally, we present the results
of the ablation experiments for serialized instances in contrastive learning in
Section A.3.
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Fig. 1. Examples of various aspects in Text-Aug.
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A.1 Text-Aug

Text-Aug is a data augmentation strategy suitable for handwritten text. It
includes four aspects: affine transformation, stroke jitter, stroke overlap, and
stroke thickness. More examples of Text-Aug are shown in Figure 1. The de-
tailed pseudo-code is shown below. Here we adopt the imgaug, numpy, and cv2

packages to implement it.

1 from imgaug import augmenters as iaa

2 import numpy as np

3 import cv2

4

5 def img_erode(images ,random_state ,parents ,hooks):

6 kernel = np.ones ((4 ,4),np.uint8)

7 f=lambda img:cv2.erode(img ,kernel ,iterations =2)

8 images =[f(img)[:,:,np.newaxis] for img in images]

9 return images

10 def img_dilate(images ,random_state ,parents ,hooks):

11 kernel = np.ones ((2 ,2),np.uint8)

12 f=lambda img:cv2.dilate(img ,kernel ,iterations =1)

13 images =[f(img)[:,:,np.newaxis] for img in images]

14 return images

15 def img_opening(images ,random_state ,parents ,hooks):

16 kernel = np.ones ((5 ,5),np.uint8)

17 f=lambda img:cv2.morphologyEx(img ,cv2.MORPH_OPEN ,kernel)

18 images =[f(img)[:,:,np.newaxis] for img in images]

19 return images

20 def img_closing(images ,random_state ,parents ,hooks):

21 kernel = np.ones ((4 ,4),np.uint8)

22 f=lambda img:cv2.morphologyEx(img ,cv2.MORPH_CLOSE ,kernel)

23 images =[f(img)[:,:,np.newaxis] for img in images]

24 return images

25 text_aug=iaa.Sequential ([

26 iaa.SomeOf ((2 ,4) ,[

27 #1. Affine Transformation

28 iaa.Affine(scale =(0.5 ,1.05) ,cval =255),

29 iaa.Affine(translate_percent ={"x": ( -0.03 ,0.03),"y"

:( -0.07 ,0.07)},cval =255) ,

30 iaa.OneOf([

31 iaa.Affine(rotate =(-3,3),cval =255),

32 iaa.Affine(shear={"x": (-30,30),"y":(-10,10)},

cval =255) ,

33 ]),

34 iaa.Sharpen(alpha =(0.3, 0.7), lightness =(0.6, 1.4)),

35

36 #2. Stroke Jitter

37 iaa.PiecewiseAffine(scale =(0.01 , 0.05), mode=’edge’,

nb_rows =(2 ,4), nb_cols =(4 ,8)),

38 iaa.imgcorruptlike.ElasticTransform(severity =(1 ,2)),

39 #3. Stroke Overlap
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40 iaa.BlendAlpha ((0.0 ,0.5),iaa.Affine(rotate=(-8, 8),

mode=’edge’),per_channel=False),

41

42 iaa.OneOf([

43 #4. Stroke Thickness

44 iaa.Lambda(img_erode),

45 iaa.Lambda(img_dilate),

46 iaa.SigmoidContrast(gain=(2, 8), cutoff =(0.4,

0.6)),

47 iaa.MedianBlur(k=(3, 7)),

48 iaa.Lambda(img_opening),

49 iaa.Lambda(img_closing),

50 #3. Stroke Overlap

51 iaa.MotionBlur(k=9),

52 iaa.GaussianBlur(sigma =(0.0, 2.0)),

53 ]),

54 ],random_order=True),

55 iaa.Resize ({"height":32, "width":100}) ,

56 ])

Table 1. Architecture of ResNet29. ks, c, s, and p represent the size of the convolution
kernel, the dimension of the convolution kernel, stride, and padding, respectively. The
output size is height× width.

Layer Output Size
Configuration
ks, c s p

Input 32× 100 - - -
Conv1 32× 100 3× 3, 32 (1,1) (1,1)
Conv2 32× 100 3× 3, 64 (1,1) (1,1)

Maxpool1 16× 50 2× 2 (2,2) (0,0)

Block1 16× 50

[
3× 3, 128
3× 3, 128

]
× 1 (1,1) (1,1)

Conv3 16× 50 3× 3, 128 (1,1) (1,1)
Maxpool2 8× 25 2× 2 (2,2) (0,0)

Block2 8× 25

[
3× 3, 256
3× 3, 256

]
× 2 (1,1) (1,1)

Conv4 8× 25 3× 3, 256 (1,1) (1,1)
Maxpool3 4× 26 2× 2 (2,1) (0,1)

Block3 4× 26

[
3× 3, 512
3× 3, 512

]
× 5 (1,1) (1,1)

Conv5 4× 26 3× 3, 512 (1,1) (1,1)

Block4 4× 26

[
3× 3, 512
3× 3, 512

]
× 3 (1,1) (1,1)

Conv6 2× 27 2× 2, 512 (2,1) (0,1)
Conv7 1× 26 2× 2, 512 (1,1) (0,0)
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A.2 ResNet29

In CMT-Co, both the momentum encoder and the encoder are ResNet29. The
detailed architecture of ResNet29 is shown in Table 1.

A.3 Ablation Experiment of Serialization Instance

SeqCLR [1] performs contrastive learning after mapping a sequential feature
map to instances. There are three types of instance-mapping functions: all-to-
instance, window-to-instance, and frame-to-instance. The all-to-instance method
treats all frames of a sequential feature map as a single instance for contrastive
learning. The window-to-instance approach treats fixed-window frames of a se-
quential feature map as a single instance for contrastive learning. The frame-to-
instance approach treats each frame as a single instance for contrastive learning.
Our method CMT-Co uses the whole word image as a single instance in con-
trastive learning, which is equivalent to the all-to-instance method in SeqCLR.

To verify the effect of different serialization instance methods in CMT-Co, we
conduct some ablation experiments according to the instance-mapping method
of SeqCLR, as shown in Table 2. Note that the frame-to-instance method has the
same settings as in SeqCLR, which eventually transforms the sequential feature
map into T instances (T = 5). As can be seen from Table 2, in the framework of
CMT-Co, taking the whole word image as a single instance works best. Because
this allows the model to learn the semantic information of the entire word, and
then combine it with the character feature learning of CMT to get better results.

Table 2. The ablation for serialized instances in contrastive learning.

Method All-to-instance Window-to-instance Frame-to-instance

Accuracy 81.3 80.9 81.1
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