
Is an Object-Centric Video Representation
Beneficial for Transfer?

Supplementary Material

Chuhan Zhang1, Ankush Gupta2, and Andrew Zisserman1

1 Visual Geometry Group, Department of Engineering Science
University of Oxford

{czhang,az}@robots.ox.ac.uk
2 DeepMind, London

ankushgupta@google.com

Table of Contents

1 Architecture . 2
1.1 Visual backbone . 2
1.2 Trajectory backbone . 2
1.3 Object Learner . 2
1.4 Classification Module & classifier . 4

2 Hand Contact State Classification . 4
3 Human-Object Predicate Prediction . 5
4 Ablations . 6

4.1 Number of context queries . 6
4.2 Ablation on choice of input layer from the visual backbone 6
4.3 Ablation on the depth and width of Object Learner. 6

5 Other Auxiliary Losses . 6
5.1 Instance-level contrastive loss on visual transformation vectors . . 7
5.2 Class-level contrastive loss on RoI-Pooled object vectors 8

6 Implementation Details . 9
6.1 Model architecture. 9
6.2 Data preprocessing . 9
6.3 Training. 9

7 More Visualizations . 9

2 C. Zhang et al.

1 Architecture

1.1 Visual backbone

We use Motionformer [1] as the visual backbone, it takes a sequence of video
frames I ∈ RT×H×W×3, patchifies these into 3D patches of size (2× 16× 16× 3)
each, and then encodes them. It has 12 self-attention layer with 12 heads each,
and outputs feature maps V ∈ RT×(H′W ′)×C , where C = 768. All the hyper-
parameters are the same as the ones used in [1] on SomethingSomething-V2.

1.2 Trajectory backbone

The trajectory backbone consists of a box embedding module and a Spatial
Temporal Layout model (STLT) of [2]. It takes a sequence of bounding boxes of
objects as input and outputs spatial and temporal layout embeddings.

The input bounding boxes Bt = (bt1, b
t
2, b

t
3, . . . , b

t
o) of O number of objects in

a given frame are in the format [x1, y1, x2, y2], they are first projected into box
embeddings Φ ∈ RO×T×C through an MLP. Learnable object-ID embeddings
D = {dj}Oj=1 are added to the box embeddings to obtain Φin, which serve as an
input to the STLT .

STLT consists of two self-attention transformers, the Spatial Transformer and
the Temporal Transformer. An overview of its archiecture is shown in Figure 1.
The Spatial Transformer processes the boxes at each frame separately. In each
frame, it takes a learnable CLS token and box embeddings Φt

in ∈ RO×C as input
into the self-attention layers, and output a frame-level representation lt ∈ R1×C

and spatial-context-aware box embeddings Φt
out ∈ RO×C .

The Temporal Transformer encodes trajectory information between frames,
it applys self-attenion on the frame-level embeddings Lt = (l1, l2, . . . , lT) from
the Spatial Transformer with another learnable CLS token. At the output, we will
have temporal-context-aware frame embeddings Lout ∈ RT×C and a video-level
representation Ctraj ∈ R1×C . Ctraj is later used to compute the classification
loss, while Lout ∈ RT×1×C is concatenated with the Φout ∈ RT×O×C from the
Spatial Transformer as the final trajectory embeddings G ∈ RT×(O+1)×C , G is
then broadcasted and concatenated with the visual feature map V ∈ RT×H′W ′×C

from the 6th layer of the visual backbone, to be the keys and values of the Object
Learner.

1.3 Object Learner

The Object Learner consists of 4 cross-attention layers, each with 4 heads. The
input feature dimension is 512 and the feed-forward dimension is 2048. Keys,
values and the object-ID embeddings D from the backbones are linearly pro-
jected to dimension 512. Queries into the Object Learner are the sum of the
projected object-ID embeddings D′ = {d′i}Oi=1 and a set of learnable embeddings
Q = {qi}O+K

i=1 , where O is the number of object queries and K is the number of
context queries. We set O = 5, K = 3 in the experiments.

Title Suppressed Due to Excessive Length 3

MLP

boxes

object ID
embeddings

+ + +

Spatial Transformer

spatial-context-aware
box embeddings

Temporal Transformer

+ + +

temporal
embeddings

frame-level
embeddings

video-level
embeddings

temporal-context-aware
frame embeddings

Fig. 1. Architecture of STLT. Image reproduced from [2]. Left: Spatial Trans-
former: It takes object bounding boxes at different frames and encodes their spatial
layout independently, a special class embedding is used to aggregate per-frame infor-
mation. Right: Temporal Transformer: It takes the frame-level output from the
spatial Transformer as input, and encodes them along the temporal dimension. An-
other special class embedding is concatenated to the temporal features for video-level
classification.

We use trajectory attention mechanism [1] in cross-attention layers to replace
joint spatio-temporal attention. For each object query qi, we first compute its
attention scores along the spatio-temporal dimension, and use the scores for
weighted pooling on spatial dimension only:

aist =
exp〈qi,kst〉∑

s′t′ exp〈qi,ks′t′〉
, (1)

ỹit =
∑
s

vst · aist, (2)

where ỹit is the spatially aggregated token at time t given qi, which is also referred
as the ‘trajectory token’ at time t. Once the trajectories Ỹi are computed, they
are further pooled across time to extract intra-frame information/connections.
To do so, the trajectory tokens are projected to a new set of keys and values,
and the query is projected again to a new set of temporal queries:

q̃i = W̃q qi, k̃it = W̃k ỹit, ṽit = W̃v ỹit. (3)

The new query is used to pool across the new time (trajectory) dimension by
applying 1D cross-attention:

yi =
∑
t

ṽit ·
exp〈q̃i, k̃it〉∑
t′ exp〈q̃i, k̃it′〉

. (4)

4 C. Zhang et al.

1.4 Classification Module & classifier

The Classification Module is made up of 2 self-attention layers, each with 4
heads. The input dimension of features is 512 and the feed-forward dimension
2048. A learnable CLS token is concatenated to the input features, the output
of which is then fed into a downstream classifier for final classification. The
downstream classifier is an MLP with two linear layers and a tanh activation
between them.

2 Hand Contact State Classification

We use the training and validation split in SomethingElse [3] for hand contact
state classification. To generate ‘ground truth’ contact state labels, we use a pre-
trained object-hand state detector from [4]. The detector predicts 5 hand contact
states, namely ‘no contact’, ‘self contact’, ‘other person contact’, ‘portable object
contact’ and ‘stationary object contact’ (e.g., furniture). It labels 85% of the
frames in SomethingElse as ‘portable object contact’ and the rest as other types
of contact. Instead of doing classification on a very unbalanced contact state, we
design a 3-way classification task by categorizing the videos into the following
classes:

1. No hand contact: there is no hand in the video, or there are hands in the
frames but they are not in contact with any object.

2. One hand contact: There are one or two hands in the video, only one hand
is in contact with objects.

3. Two hands contact: There are two hands in the video, they in contact with
the same or different objects.

To do this video-level categorization, frame with the largest number of hands
detected are used from each video, we check whether these hands are labelled
as ‘no contact’ to decide which class the video falls in. The class distribution is
shown in Table 1. Examples of the 3 classes are visualized in Figure 2.

Class no contact one hand contact two hands contact

%videos 9% 31% 59%

Table 1. Distribution of classes in hand contract state classification in Some-
thingElse. We use the labels provided by a pre-trained hand state detector [4], and
categorize the videos into 3 classes: ‘no hand contact’, ‘one hand contact’ and ‘two
hands contact’.

Title Suppressed Due to Excessive Length 5

No hand contact: Throwing something

No hand contact: Turning the camera downwards while filming something

One hand contact: Throwing something

One hand contact: Dropping something into something

Two hands contact: Tearing something into two pieces

Two hands contact: Spreading something onto something

Fig. 2. Visualization of samples from the three classes in hand contact state
classification. Above each video sample, we show its hand contact state class together
with its action class. Ground-truth bounding boxes of hands and objects are plotted
in the frames, with blue and green boxes on hands. yellow and red boxes on objects.

3 Human-Object Predicate Prediction

Given the bounding box and category of an object, the model is tasked to predict
the predicate between human and this object. Action Genome [5] has annotations
in 37 categories (36 objects + 1 human). There are 25 human-object relationships
(aka. predicate), including 3 attention relationships, 6 spatial relationships and
16 contact relationships. There can be more than one relationships between a
person and an object, thus the performance is measured in terms of recall.

6 C. Zhang et al.

When we linear probe our baselines Motionformer and Motionformer+STLT,
we use the CLS tokens from the backbones, and concatenate them with a one-
hot object-id, indicating which object we want to predict the predicate. When
linear probing our model with an Object Learner, we use the same approach
except that we are also concatenate the CLS tokens and object-ids with the
addtiontal object-centric representations of the given object. We train a 25-way
linear classifier on the the concatenated vector to predict the predicate classes,
using a binary cross-entropy loss.

4 Ablations

4.1 Number of context queries

We ablate the number of context queries in our Object Learner. In Table 2 we
show the classification performance with {0, 3, 6, 9} context queries on Some-
thingElse. The top-1 accuracy increases by only 0.2% as the number of context
queries goes from 0 to 9. The small impact might be due to the fact that action
recognition in the dataset we use only depends on two or three key objects.

4.2 Ablation on choice of input layer from the visual backbone

We ablate the performance of models with the Object Learner reading from dif-
ferent layers in the visual backbone. We tried layers 6,8,12 from a Motionformer
with 12 layers in total. Table 3 shows the results. While the accuracy of direct
class predictions from our Object Learner does not differ too much (±0.2%),
the input visual layer has a big influence on the combined results from Object-
Learner and CLS token, where we averge the probability prediction from Object
Learner and CLS token. The improvement on the averaged Top1 is 1.6% when
using layer 6, and -0.1% when using layer 12. The monotonic drop with increase
in depth suggests that earlier layer fusion is necessary for complementary results
to our Object Learner.

4.3 Ablation on the depth and width of Object Learner.

We evalute the performance of our model using an Object Learner with a varying
number of layers and heads. Table 4 shows the results ranging from 4 layers to
8 layers, and from 4 heads to 8 heads. Doubling the size of model only leads
to 0.2% increase in top1 accuracy and 0.3% increse in top5 accuracy. It shows
that learning good object-centric representations from small number of objects
(within 5) does not require a very deep and wide Object Learner.

5 Other Auxiliary Losses

We experimented with other types of auxiliary losses on the object summary
output from the Object Learner, always with the intention of improving the

Title Suppressed Due to Excessive Length 7

#context

queries
0 3 6 9

Top 1 73.5 73.6 73.7 73.7

Top 5 93.5 93.5 93.5 93.6

Table 2. Ablation on number
of context queries in Object
Learner. We evaluate the compo-
sitional action recognition perfor-
mance on SomethingElse by using
different number of context queries.

Input

Visual Layer

OL

Top1

Backbone

Top1

Avg

Top1

6 71.0 72.0 73.6

8 71.3 72.3 73.1

12 70.9 72.1 72.0

Table 3. Ablation on the Visual Input in
Object Learner. We evaluate the performance
of our model on compositional action recogni-
tion (unseen objects) with the Object Learner
extracting features from layer 6,8,12 in the vi-
sual backbone of depth 12. Results show reading
from the sixth layer yield best performance.

#Layers # Heads GFLOP Top1 Top5

4 4 382 73.6 93.5

8 4 384.5 73.7 93.8

8 8 384.5 73.8 93.8

Table 4. Ablation on the depth and width of Object Learner on Somethin-
gElse. We evalute the performance of our model using Object Learners with 4 layers
and 4 heads, 8 layers and 4 heads, 8 layers and 8 heads.

modality fusion by encouraging the object queries to attend to both the modality
streams. However, the results (Table 5) show that they do not help achieve a
better performance on downstream tasks, hence these other auxiliary losses are
not included in the main paper. We list them below to illustrate approaches that
don’t benefit action or hand state classification.

5.1 Instance-level contrastive loss on visual transformation vectors

To induce greater object-awareness, we train the object summary vectors to be
able to pick out ‘correct’ visual dynamics from incorrect/synthetically generated
ones. To this end, we introduce a contrastive loss with estimated ‘transforma-
tion vectors’, which embeds the visual affinities of objects along the temporal
dimension. The ‘transformer vectors’ computed from frames in a correct tem-
poral order serve as positive samples, and the ones computed from temporally
shuffled frames serve as negative samples in the loss. The summary vectors are
then tasked with associating each object to its ‘correct’ sample from the bag of
positives and negatives.
More specifically, given the visual feature maps of a clip and the object bound-
ing boxes in it, we RoI-Pool the object features wj from each frame, where j is
the index of object. Based on these per-frame object features, we compute the
‘affinity vector’ between frames by:

8 C. Zhang et al.

ãff
i

j = wi
j ·w>

i+1

j , (5)

ãff
shuffle,i

j = wi
j ·w>

k

j , k 6= i+ 1 (6)

We embed the affinity vectors of an object along the temporal dimension into
a transformation vector zj . The encoding is done by using a small Transformer
g(.) with 2 layers and 4 heads.

zj = g(ãff j), (7)

zshufflej = g(ãff
shuffle

j), (8)

ãff j = (ãff
1

j , ãff
2

j , . . . , ãff
T ′−1
j) (9)

ãff
shuffle

j = Shuffle(ãff
1

j , ãff
2

j , . . . , ãff
T ′−1
j) (10)

zj and zshufflej are used to compute the contrastive loss on object summary
vectors sj as in:

Laff = −
∑
j

[
log

exp(s>j · zj)∑
k exp(s>j · zk) +

∑
k exp(s>j · z

shuffle
k)

]
(11)

5.2 Class-level contrastive loss on RoI-Pooled object vectors

Based on the hypothesis that objects under the same action may have similar
transformation of states, we design a contrastive loss to push these object sum-
maries closer in the feature space. For each object j and the action class label
l it is associated with. We apply a supervised contrastive loss on each object
summary vector sj , where other vectors with the same class label l serve as its
positive samples, with different class labels are used as its negative samples.

Lobj = −
∑
j

[
log

∑
k exp(s>j,l · sk,l)∑

k exp(s>j,l · sk,l) +
∑

m,l′ 6=l exp(s>j,l · sm,l′)

]
(12)

Loss OL only Backbone only Final

Ltraj 71.0 72.0 73.6

Ltraj + Ltrans 71.0 72.1 73.5

Ltraj + Ltrans + Lobj 70.0 72.2 73.2

Table 5. Ablation on different types of auxiliary losses on SomethingElse.
Adding other auxiliary losses does not improve the action classification results. We
choose to use a single contrastive loss on trajectories (Eq.1 in main paper) for simplicity.

Title Suppressed Due to Excessive Length 9

6 Implementation Details

6.1 Model architecture.

We use Motionformer [1] as the visual encoder, operating on 16 frames of size
224×224 pixels uniformly sampled from a video; the 3D patch size for tok-
enization is 2×16×16. We use STLT [2] as the trajectory encoder which takes
normalized bounding boxes from 16 frames as input. Our Object Learner is a
Cross-Transformer with 6 layers and 8 heads. We adopt the trajectory attention
introduced in [1] instead of the conventional joint spatio-temporal attention in
the layers. The Classification Module has 4 self-attention layers with 6 heads.
We set the number of context queries as 2 in all the datasets, and number of
object queries as 6 in SomethingElse, SomethingSomething and EpicKitchens,
37 in ActionGenome.

6.2 Data preprocessing

During training, we sample clips of size 16 × 224 × 224 uniformly from videos
so that the temporal span of the clips cover the whole video. Input images are
normalized with mean and standard deviation 0.5, rescaling in the range [−1, 1].
For data augmentation, we apply random scale jittering from scale 180 to 256
such that the objects are not cropped out of the frames, random spatial cropping
at size 224 × 224, and random horizontal flips only to flipping-invariant classes
(determined by class descriptions). We also use RandAugment [6] with maximum
magnitude 20 for color jittering. For inference, we use 3-crop evaluation following
previous works [1,7].

6.3 Training

We train the model with an AdamW [8] optimizer for 35 epochs with weight de-
cay 1× 10−3. The base learning rate is 3.75× 10−5, decayed by 0.1 and 0.01 at
epoch 20 and 30. We use label smoothing [9] with alpha 0.2 and mixed precision
training. The rate of DropConnect [10] in all attention layers is set to 0.2. Due
to limited compute resources (making joint end-to-end training infeasible), we
first train the visual and trajectory backbone separately on corresponding train-
ing set, then freeze the visual backbone and fine-tune the trajectory backbone,
Object Learner and Classification Module on 2 RTX 6000 GPUs with batch size
72.

7 More Visualizations

In the main paper we have shown some visualizations of object-aware attention in
the Object Learner (Fig.4 in main paper), from models trained with and without
auxiliary loss. The visualizations are done by plotting the attention scores from
the last cross-attention layer. Here we add some more examples in Figure 3.

10 C. Zhang et al.

ZLWK�WUDMHFWRU\�FRQWUDVW�ORVV QR�WUDMHFWRU\�FRQWUDVW�ORVV

KD
QG

RE
MH
FW
��

RE
MH
FW
��

ZLWK�WUDMHFWRU\�FRQWUDVW�ORVV QR�WUDMHFWRU\�FRQWUDVW�ORVV

KD
QG

RE
MH
FW
��

ZLWK�WUDMHFWRU\�FRQWUDVW�ORVV QR�WUDMHFWRU\�FRQWUDVW�ORVV

KD
QG

RE
MH
FW
��

RE
MH
FW
��

Fig. 3. Visualization of object-aware attention in Object Learner, from mod-
els trained with (Left) and without (Right) auxiliary loss. Attention of object
queries on visual feature map is visualized above. Although in both cases the attention
is object-centric, the one trained without auxiliary loss does not always attend to the
hands (middle figure), and has either weak or peaky attention on some parts of the
objects (object-1, object-2 in the upper figure, object1-in the lower figure). While the
one trained with the auxiliary loss always pays attention to the hand and even has
strong attention on the full objects. Brighter colors indicates higher attention scores.

Title Suppressed Due to Excessive Length 11

References

1. Patrick, M., Campbell, D., Asano, Y., Misra, I., Metze, F., Feichtenhofer, C.,
Vedaldi, A., Henriques, J.F.: Keeping your eye on the ball: Trajectory attention
in video transformers. NeurIPS (2021) 2, 3, 9

2. Radevski, G., Moens, M.F., Tuytelaars, T.: Revisiting spatio-temporal layouts for
compositional action recognition. In: Proc. BMVC. (2021) 2, 3, 9

3. Materzynska, J., Xiao, T., Herzig, R., Xu, H., Wang, X., Darrell, T.: Something-
else: Compositional action recognition with spatial-temporal interaction networks.
In: Proc. CVPR. (2020) 4

4. Shan, D., Geng, J., Shu, M., Fouhey, D.F.: Understanding human hands in contact
at internet scale. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. (2020) 9869–9878 4

5. Ji, J., Krishna, R., Fei-Fei, L., Niebles, J.C.: Action genome: Actions as composi-
tions of spatio-temporal scene graphs. In: Proc. CVPR. (2020) 5

6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical data aug-
mentation with no separate search. arXiv preprint arXiv:1909.13719 2 (2019) 7
9

7. Herzig, R., Ben-Avraham, E., Mangalam, K., Bar, A., Chechik, G., Rohrbach,
A., Darrell, T., Globerson, A.: Object-region video transformers. arXiv preprint
arXiv:2110.06915 (2021) 9

8. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proc. ICLR.
(2019) 9

9. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. (2016) 2818–2826 9

10. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with
stochastic depth. In: European conference on computer vision, Springer (2016)
646–661 9

