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1 Supplementary Material

1.1 Video

The video, which can be accessed on our project page https://senakicir.github.io/projects/
exercise feedback gives an overview of our paper by introducing our problem, explain-
ing our methodology and presenting our results.

1.2 Further Ablation Studies

Ablation study on TMP module. The architecture of our classification branch is highly
inspired by the frame-level module architecture proposed by Zhang et al. (SGN) [1].
The set-up used by SGN is a spatial MaxPooling (SMP) layer, followed by two con-
volutional layers and a temporal MaxPooling layer (TMP). Our classification branch
omits the TMP layer, because we have found it to not be useful for our case. We suspect
that the reason for this is we do not have temporal data as input to our networks, instead
we have DCT coefficients. In Table 1 we present an ablation study on using a TMP
layer. The results obtained using a TMP layer are worse in terms of both classification
accuracy and correction success.

Classification
Accuracy(%)

Classification
Loss

Correction
Accuracy(%)

Correction
Loss

Ours with TMP 76.1 1.62 91.5 3.35
Ours (w/o TMP) 90.9 1.30 94.2 1.45

Table 1. Ablation study on the TMP layer. We show the results of our framework trained using
a TMP module and without using a TMP module (ours). We note that the TMP module only plays
a role in the classification branch, however this still affects the performance of correction also,
as the two branches are trained as part of a single network. We find that the results are worse for
both classification accuracy and correction success when the TMP module is included.

Ablation study on the smoothness loss. We have trained our network with different
weights for the smoothness loss term, denoted as wsmooth. The results are reported in
Table 2. We find that wsmooth = 1e− 3 gives the best results in terms of the correction
success. However the results obtained when wsmooth = 0 gives slightly better results for
classification accuracy.

https://senakicir.github.io/projects/exercise_feedback
https://senakicir.github.io/projects/exercise_feedback
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Classification
Accuracy(%)

Correction
Success(%)

wsmooth = 1e− 1 81.8 72.7
wsmooth = 1e− 2 81.8 85.9
wsmooth = 1e− 3 (Ours) 90.9 94.2
wsmooth = 1e− 5 81.8 85.0
wsmooth = 0 93.4 87.5

Table 2. Ablation study on the smoothness loss. We present the results of our network when
trained with different weights for the smoothness loss. We find that setting the weight of the
smoothness loss to 1e − 3 gives the best results in terms correction success. The classification
accuracy is higher when smoothness loss is not used.

1.3 Classification on the NTU RGB+D Dataset

NTU RGB+D Dataset. We use the NTU RGB+D [2], a widely-used dataset for eval-
uating the performance of action classification networks [2,3,1]. We use cross-subject
division to split the training set and test set according to the person ID. A total of 40
subjects were divided into a training set of 17 subjects, a validation set of 3 subjects and
a test set of 20 subjects.

NTU RGB+D contains 56, 880 action samples. As stated in the official dataset re-
lease, 302 samples in the dataset dataset have missing or incomplete skeleton data. In
addition, some of the actions involve two people interacting with each other, which do
not match the expected input to the model, and the video frame lengths are not uniform
across sequences. To overcome these challenges, we have pre-processed this dataset.

In order to remove noisy data, for the missing or incomplete skeleton data action
sequences, we used the official list of missing data indices. As they only represent
0.53% of the total data volume, these lossy data are directly removed from the dataset.

For some of the sequences, there are two-subjects in a single frame. For such se-
quences we consider the pose coordinates of only one of them. Since the two people
motions involve movements which are mirror-symmetrical (e.g. A55 Hugging, A59
Walking towards, etc...), we find this method to be sufficient.

Different motion sequences can have different lengths. In order to counter differ-
ent video frame rates, SGN tries to segment the entire skeleton sequence into 20 clips
equally, and randomly select one frame from each clip to have a new sequence of 20
frames. However, in order to maintain consistency between the NTU dataset and the
EC3D data, we modify the inputs when feeding our data to our model by finding their
top 25 DCT coefficients. By doing so, for all input sequences we have 25 DCT co-
effiecients and do not have to worry about the differences in sequence lengths. We then
normalize, centralize and rotate the dataset as we have done with EC3D.

Classification results on NTU RGB+D Dataset. We present our classification
branch’s results on the NTU RGB+D dataset in Table 3 to compare our model’s per-
formance to SOTA action classification methods. Although we do not achieve SOTA
performance, our performance is comparable to the results of many of these methods,
showing that it is a reliable, lightweight method for action classification on other main-
stream datasets. We note that our goal is not to achieve SOTA action classification,
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but to achieve high enough accuracy to give reliable feedback and to also evaluate the
results of the action correction branch.

Methods
Classification
Accuracy (%)

HBRNN-L [4] 59.1
Part-Aware LSTM [2] 62.9
ST-LSTM + Trust Gate [5] 69.2
STA-LSTM [6] 73.4
GCA-LSTM [7] 74.4
DPRL+GCNN [8] 83.5
HCN [3] 86.5
AS-GCN [9] 86.8
VA-CNN [10] 88.7
SGN [1] 89.0
Ours 70.1

Table 3. The classification branch’s results on the NTU RGB+D dataset. While we do not
achieve SOTA performance, we outperform HBRNN-L [4], Part-Aware LSTM [2], and ST-LSTM
+ Trust Gate [5] . Our results are comparable to those of STA-LSTM [6] and GCA-LSTM [7]. We
conclude that our network is able to achieve acceptable performance on larger, more mainstream
datasets as well.

1.4 Further Qualitative Results

We have evaluated the behaviour of our framework on inputs that are already correct
and we present qualitative results in Figure 1. We find that since the input sequences are
already correct, the framework’s adjustments are very minor.

1.5 Detailed Quantitative Results

We present detailed quantitative results of our model in Tables 4 and 5. Table 4 presents
a confusion matrix of the results of our classification branch. We can clearly see which
actions are confused with which ones. We find that the “correct squat” is once confused
with a “front bent squat” and the “correct plank” is confused once with a “hunch back”
plank. It is surprising to see that the “front bent squat” is confused with mistakes from
other types of exercises, namely a “not low enough lunge” and “correct plank”. This is
a clear failure case and improvements to the model should focus on eliminating such
mistakes.

Table 5 presents the results of the correction branch. We can see how the results of
the correction branch are classified by the classification branch. For instance, for the
category of “not low enough lunge” sequences, 6 of them are successfully corrected
whereas 4 are still classified as incorrect, giving a 60% correction success for this in-
struction.
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a) Squat, Correct

b) Lunge, Correct

c) Plank, Correct

Fig. 1. Qualitative results from our framework of correcting already “correct” motions. We
input motions and corrected output motions from categories a) squats, b) lunges, c) planks. We
present the input sequences (red) in the top row. The corrected sequences (green) overlaid on
top of the input sequences (red) are presented in the bottom row. We find that since the input
sequences are already correct, the adjustments made by our framework are very minor. This
figure is best viewed in color and zoomed in on a screen.

Action
/Instruction

Confusion Matrix Accuracy(%) Average(%)

Correct 9 0 0 0 1 0 0 0 0 0 0 90.0
Feet too wide 0 5 0 0 0 0 0 0 0 0 0 100
Knees inward 0 0 5 0 0 0 0 0 0 0 0 100
Not low enough 0 0 0 4 0 0 0 0 0 0 0 100

Squats

Front bent 0 0 1 0 4 0 1 0 1 0 0 57.1

89.4

Correct 0 0 0 0 0 8 0 4 0 0 0 66.7
Not low enough 0 0 0 0 0 0 10 0 0 0 0 100Lunges
Knee passes toe 0 0 0 0 0 0 0 10 0 0 0 100

88.9

Correct 0 0 0 0 0 0 0 0 6 0 1 85.7
Arched back 0 0 0 0 0 0 0 0 0 9 0 100Planks
Hunch back 0 0 0 0 0 0 0 0 0 0 9 100

95.2

90.9

Table 4. Detailed classification results for each exercise instruction category, in the form of a
confusion matrix.
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Action Instruction Correct Incorrect
Successfully
Corrected(%)

Average(%)

Squats

Correct 10 0 100

97.1

94.2

Feet too wide 5 0 100
Knees inward 5 0 100
Not low enough 4 0 100
Front bent 6 1 85.7

Lunges
Correct 12 0 100

83.3Not low enough 6 4 60
Knee passes toe 9 1 90

Planks
Correct 7 0 100

100Arched back 9 0 100
Hunch back 9 0 100

Table 5. Detailed correction results on each exercise instruction category. We depict how
many output sequences are classified as “correct” and “incorrect”. The “incorrect” class in this
table is a grouping of all instructions that are not correct.
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