Appendix

A Further Illustrations and Pseudo Codes

Here, we describe the implementations of the two designed modules in detail.
Particularly, IoU-ESA and DCW are summarized into PyTorch-like code in Al-
gorithm 1 and Algorithm 2, respectively. The complete code is provided in the
file of the supplementary material.

For IoU-ESA, it is defined in Eq.(3) in the paper, without newly added
parameters. The key difference with the original self attention is that the IoU
matrix calculated among proposal boxes, is element-wise multiplied with the
attention matrix. Both the IoU and attn are reflecting a kind of similarity of
different proposal features.

For the DCW module, two light weights projection heads are added to gen-
erate two channel masks for classification and localization, respectively. Because
of the the two fc bottlenecks, the increase of parameters and calculations is also
small. This module strengthens the two head features for a better utilization of
object queries. It can be seen in Fig.1 in the paper.

Algorithm 1 IoU-ESA code (PyTorch-like)

# x: input temsor (N, d);
# iou: (N, N)

def IoU-ESA(x, iou):

q, k, v = fc_qgkv(x).chunk(3, dim=-1)

# nhead: num of heads in attention
q.view(N, nhead, -1).transpose(0, 1)
k.view(N, nhead, -1).transpose(0, 1)
v.view(N, nhead, -1).transpose(0, 1)

< Waa
wonn

attn = torch.bmm(q, k.transpose(l, 2))

# Eq (3). in the paper

attn = torch.exp(attn)

attn = attn * ioul[None, :, :]

attn = attn / torch.sum(attn, -1, keepdim=True)

# value routing and output projection
attn = torch.bmm(attn, v)

attn= attn.transpose(0, 1).view(N, d)
attn_out = fc_out(attn)

return attn_out

B Analyze result on CrowdHuman

We analyze self attention and dimension of features in Sec.3.1 in the paper.
Results on MS-COCO illustrate that geometry prior is expected to guide self



Algorithm 2 DCW code (PyTorch-like)

# obj_queries: (N, d)
# roi_feats: roi features, output of dynamic convs (N, s*s, d)

def DCW(pro_feats, roi_feats):

# Eq.(4). in the paper

# mask: (N, d)

mask_cls = sigmoid(fc2(fcl(obj_queries)))
mask_reg = sigmoid(fc4(fc3(obj_queries)))

# roi_feats: (N, s*s, d)
roi_feats_cls = roi_feats[:, None, :] * mask_cls
roi_feats_reg = roi_feats[:, None, :] * mask_reg

# roi_feats: (N, s*s*d)
roi_feats_cls = roi_feats_cls.flatten(1)
roi_feats_reg = roi_feats_reg.flatten(1)
# obj_feats: (N, d)

obj_feats_cls = fcb(roi_feats_cls)
obj_feats_reg fc6(roi_feats_reg)

return obj_feats_cls, obj_feats_reg

attention and disentangle features for the two tasks in detection is effective. Here,
we provide the the results on CrowdHuman in Tab. 1 and Tab. 2. Performance
on CrowdHuman also illustrate our motivation.

Table 1. Analysis on self attention. Three different models, including origin sparse
R-CNN with multi-head self attention (MSA), without self attention and attention
matrix replaced by IoU matrix (IoU-MSA), are trained on CrowdHuman. AP and
mMR indicate the Average Precision and Log-average Miss Rate, respectively.

Method AP T mMR | Recall T

MSA 88.8 49.9 95.8
w/o MSA 81.5 65.5 95.5
IoU-MSA 86.8 54.2 95.7

C Implementation on DETR and discussions

We also insert the two modules, IoU-ESA and DCW, into DETR [1]. DETR and
sparse R-CNN [3] both are of cascade structures, and updating object queries for
the next stage. In sparse R-CNN, proposal boxes are inputs of the model, which
are parameters at the initial stage and output bounding boxes from last stage
at later. JoU matrix is computed among proposal boxes. However, there are no
bounding boxes as input in DETR. Therefore, IoU is set to 1 for all elements
at the first stage, and in the later stage, it is computed in the same as sparse



Table 2. Analysis on feature disentanglement on CrowdHuman.

Method AP 1+ mMR | Recall 1

En. (original) 89.2 48.3 95.9
Dis. (half dim) 88.6 49.7  95.5
Dis. (full dim) 89.1 48.5  95.8

R-~-CNN. The channel masks m. and m,., given by DCW, are generated from the
object queries before cross attention, and then perform on object queries after
cross attention.

Table 3. Implementation results on DETR. ResNet-50 is utilized as backbone, and
the number of object queries is set as 100.

Method  |Params FLOPs| AP APsg AP75 APs APy AP
DETR 41M  86G ‘34.9 55.5 35.9 14.5 37.6 53.8

DETR + ours| 48M  86G [35.4 56.8 36.7 15.4 38.0 54.1

We train it for 50 epochs, and the learning rate is dropped by a factor of 10
at 40th epoch. All other settings are the same as DETR. As shown in Tab. 3,
our work reaches 35.4, which slightly gains 0.5 AP from DETR. It also behaves
well on the other five metrics. The number of parameters in our work rises from
41M to 48M, and FLOPS keeps the same. Although our work improves the
performance on sparse R-CNN significantly, it doesn’t do so well on DETR. We
notice that quries in DETR obtain all the information from the whole image,
which is different from sparse R-CNN. Furthermore, since each query is 1 x
1 x C without spatial dimension, m. and m, can not apply for different spatial
positions like SE-Net [2]. This indicates that the proposed modules are targeted
to sparse R-CNN, in which Rol-align is performed to get the local object region.

D Visualizations

As our two designed modules enhance the origin sparse R-CNN; the performance
increases stably based on different backbones. The convergence speed of the two
works are shown in Fig. 1. Note that 1x and 2x (12 and 24 epochs) training
schedules are also plotted to indicate the convergence rate. Compared with sparse
R-CNN, our work achieves a better AP from the beginning of training, our work
finally gains 1.6 AP at 36th epoch. Some visual results on COCO are giving
in Fig. 2, which organizes the three columns in the sequence of sparse R-CNN,
ours and ground truths. In simple scenarios, there are no big differences between
sparse R-CNN and our work. At the first row, both sparse R-CNN and our
work have done a good job. The rest four rows’ scenarios are more complex



COCO AP
Now
o o

—— Sparse R-CNN
—— Ours

0 5 10 15 20 25 30 35
Training Epochs

Fig. 1. Convergence curves of sparse R-CNN and ours on COCO val2017. Both models
have the same training settings with ResNet-50 and 100 proposals. Our work gains
higher AP than sparse R-CNN from the beginning to the end.

than the first one, we can see that the detection result of our work is better
than sparse R-CNN. The targets in complicated scene are detected by our work.
Similar phenomena can be observed in Fig. 3 and Fig. 4. Detection results on
CrowdHuman are also shown in Fig. 5.

References

1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European Conference on Computer
Vision. pp. 213-229. Springer (2020)

2. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132-7141 (2018)

3. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L.,
Yuan, Z., Wang, C., et al.: Sparse r-cnn: End-to-end object detection with learnable
proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 14454-14463 (2021)



Sparse R-CNN ours GT

Fig. 2. Visualizations of detection results on COCO from sparse R-CNN, ours and
ground truths. Our work is more better in complex scenarios.



Sparse R-CNN ours GT

Fig. 3. Visualizations of detection results on COCO from sparse R-CNN, ours and
ground truths.



Sparse R-CNN ours GT

Fig. 4. Visualizations of detection results on COCO from sparse R-CNN, ours and
ground truths.



GT

ours

Sparse R-CNN

Fig. 5. Visualizations of detection results on CrowdHuman from sparse R-CNN, ours

and ground truths.



