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Appendix A: A Brief Summary of Related
Weakly-Supervised Segmentation Methods

Table 5. A brief summary of related weakly-supervised segmentation meth-
ods. Most existing methods are based on the image-level, box, and scribble annotations
and sometimes additionally utilize saliency prior. Different from existing schemes,
our method pioneers exploring a general solution for semi- and scribble-
supervised segmentation.
I: image-level annotation. P: pixel-level annotation. B: box annotation.
U : unlabeled data. SP: saliency prior. S: scribble annotation.

method annotation method annotation

Papandreou et al. (ICCV’15) [1] I/I + P/B + P Lee et al. (CVPR’21) [2] I/I + P
Kolesnikov et al. (ECCV’16) [3] I Li et al. (CVPR’22) [4] I/I + SP
Khoreva et al. (CVPR’17) [5] B Pan et al. (IJCV’22) [6] I/I + P/U + P
Roy et al. (CVPR’17) [7] I Lin et al. (CVPR’16) [8] S
Wei et al. (CVPR’17) [9] I Vernaza et al. (CVPR’17) [10] S
Kim et al. (ICCV’17) [11] I Tang et al. (ECCV’18) [12] S
Chaudhry et al. (BMVC’17) [13] I Tang et al. (CVPR’18) [14] S
Ge et al. (CVPR’18) [15] I Wang et al. (CVPR’19) [16] S
Li et al. (CVPR’18) [17] I/I + P Marin et al. (CVPR’19) [18] S
Wang et al. (CVPR’18) [19] I Ji et al. (MICCAI’19) [20] S
Ahn et al. (CVPR’18) [21] I Lee et al. (MICCAI’20) [22] S
Huang et al. (CVPR’18) [23] I Valvano et al. (TMI’21) [24] S
Wei et al. (CVPR’18) [25] I/I + P Zhang et al. (TPAMI’21) [26] S
Lee et al. (CVPR’19) [27] I/I + P Lu et al. (PR’21) [28] S
Song et al. (CVPR’19) [29] B Chen et al. (ICCV’21) [30] S
Ahn et al. (CVPR’19) [31] I Xu et al. (ICCV’21) [32] S
Li et al. (ICCV’19) [33] I + SP Pan et al. (ICCV’21) [34] S
Shimoda et al. (ICCV’19) [35] I Liang et al. (CVPR’22) [36] S
Zhang et al. (ECCV’20) [37] I Zhang et al. (CVPR’22) [38] S
Sun et al. (ECCV’20) [39] I/I + SP Unal et al. (CVPR’22) [40] S
Chen et al. (ECCV’20) [41] I Luo et al. (MICCAI’22) [42] S
Wang et al. (CVPR’20) [43] I Zhang et al. (MICCAI’22) [44] S
Chang et al. (CVPR’20) [45] I Liu et al. (PR’22) [46] S
Zhang et al. (NeurIPS’20) [47] I Gao et al. (MedIA’22) [48] S + U
Lee et al. (CVPR’21) [49] B TriMix (ours) S/U + P
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Appendix B: Supplementary of 3D Semi-Supervised
Segmentation on ACDC and Hippocampus Datasets

Implementation of 3D semi-supervised methods. When evaluating
TriMix on 3D semi-supervised segmentation on the ACDC and hippocampus
datasets, we implemented several SSL approaches and compared TriMix to them.
We implemented MT1 [50], UA-MT2 [51], STS-MT3 [52], CutMix-Seg4 [53],
and CPS5 [54] based on their official codebases. UMCT [55] is not open-source,
and we reproduced it thanks to its straightforward idea and sufficient technical
details in the original paper. There are seven methods for comparison: MT, UA-
MT, CutMix-Seg, STS-MT, CPS, UMCT, and TriMix. All methods shared some
similar settings: the same backbone V-Net [56], 300 training epochs, an SGD
with a weight decay of 0.0001, and a momentum of 0.9. The learning rate was
divided by 10 every 100 epochs. Since UA-MT and UMCT require uncertainty
estimation, we added dropout layers to V-Net, identical to the work [51]. We
extended CutMix [57] to 3D. CutMix-Seg, CPS, and TriMix were trained with
the same 3D CutMix augmentation, for which the cropped volume ratio was set
to 0.2. UMCT was trained with three different views. We tuned hyperparameters
for the methods based on cross-validation.

Comparison of trainable parameters, training and inference time.
Table 6 compares our method with other SSL methods regarding trainable pa-
rameters, average training time, and average inference time required per fold
validation on the ACDC and hippocampus datasets. UMCT and TriMix contain
the maximum number of parameters. UA-MT is the most time-consuming for
training among the mean-teacher-based methods since it needs several forward
passes to model uncertainty. UMCT costs more time for training than CPS and
TriMix since it also requires several forward passes to model uncertainty. For the
inference time, each network within CPS, UMCT, and TriMix requires a forward
pass if predictions from all networks are required.

Table 6. Comparison of number of trainable parameters, training and inference time
among semi-supervised methods.

method backbone params (M)
hippocampus (1/196), NVIDIA GeForce GTX 1080 Ti ACDC (16/150), NVIDIA RTX A6000
training/fold (s) inference/fold (s) training/fold (s) inference/fold (s)

MT V-Net 9.44 232.08 2.20 1130.72 45.95
UA-MT V-Net 9.44 265.21 2.20 1964.63 45.95
CutMix-Seg V-Net 9.44 239.79 2.20 1229.13 45.95
STS-MT V-Net 9.44 231.70 2.20 1117.97 45.95
CPS V-Net 2×9.44 249.24 2×2.20 1917.51 2×45.95
UMCT V-Net 3×9.44 384.20 3×2.20 5741.31 3×45.95
TriMix V-Net 3×9.44 270.25 3×2.20 2777.57 3×45.95

1 https://github.com/CuriousAI/mean-teacher
2 https://github.com/yulequan/UA-MT
3 https://github.com/tengteng95/Spatial Ensemble
4 https://github.com/Britefury/cutmix-semisup-seg
5 https://github.com/charlesCXK/TorchSemiSeg
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Table 7. Comparison with semi-
supervised state-of-the-arts on LA
dataset under 1/10 and 1/5 partition pro-
tocols. Results of previous methods are
from [58]. Best and second-best results
are emphasized in bold red and black.
†: method with ensemble strategy. Our
method achieves competitive results
with state-of-the-arts.
method Dice Jaccard 95HD ASD
upper bound 91.14 83.82 5.75 1.52

protocol: 1/10
baseline 79.99 68.12 21.11 5.48
DAP [59] 81.89 71.23 15.81 3.80
UA-MT [51] 84.25 73.48 13.84 3.36
SASSNet [60] 87.32 77.72 9.62 2.55
LG-ER-MT [61] 85.54 75.12 13.29 3.77
DUWM [62] 85.91 75.75 12.67 3.31
DTC [63] 86.57 76.55 14.47 3.74
MC-Net [58] 87.71 78.31 9.36 2.18
TriMix 88.46 79.59 9.91 2.94

TriMix† 88.89 80.23 9.38 2.69

protocol: 1/5
baseline 86.03 76.06 14.26 3.51
DAP [59] 87.89 78.72 9.29 2.74
UA-MT [51] 88.88 80.21 7.32 2.26
SASSNet [60] 89.54 81.24 8.24 2.20
LG-ER-MT [61] 89.62 81.31 7.16 2.06
DUWM [62] 89.65 81.35 7.04 2.03
DTC [63] 89.42 80.98 7.32 2.10
MC-Net [58] 90.34 82.48 6.00 1.77
TriMix 89.55 81.22 7.76 2.33

TriMix† 89.90 81.78 7.22 2.07
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Fig. 5. Ablation study on effective-
ness of CutMix augmentation under
1/10, 1/5, and 1/2 partition protocols us-
ing LA dataset with four metrics. With-
out CutMix augmentation, TriMix would
degenerate into a tri-training-like scheme,
where consistency is only regularized un-
der network diversity. Data augmentation
introduced by CutMix blends with net-
work diversity to form a more challenging
perturbation. TriMix w/ CutMix achieves
better performance than TriMix w/o Cut-
Mix across all partition protocols, indi-
cating that consistency regularization
under a stricter perturbation im-
proves model generalization.

Appendix C: Additional Experiments

C.1: Semi-Supervised 3D Segmentation of Left Atrium

Data and evaluation metrics. We used the Left atrium (LA) dataset6,
which contains 100 3D gadolinium-enhanced MRI scans and LA ground truth.
All volumes were cropped at the center of the heart region, and intensities were
normalized as zero mean and unit variance. We split 100 scans into 80 for training
and 20 for validation. We applied Dice, Jaccard, 95% Hausdorff Distance (95HD),
and average surface distance (ASD) as evaluation metrics, following previous
works [51, 60, 63, 58].

Implementation details. The training setting is identical to previous meth-
ods [51, 60, 63, 58]. Concretely, we adopted V-Net [56] as backbone architecture
and trained TriMix 6000 iterations using the SGD optimizer with a weight decay

6 http://atriaseg2018.cardiacatlas.org/
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of 0.0001 and a momentum of 0.9. We set the initial learning rate as 0.01 and
decayed it by a factor of 10 every 2500 iterations. At each training iteration,
2 labeled and 2 unlabeled samples with size 112 × 112 × 80 were fetched. Data
augmentation, including flipping and rotation, was applied. The cropped volume
ratio of 3D CutMix was empirically set to 0.2.

Experiment results. We compared TriMix under 1/10 and 1/5 partition
protocols with seven state-of-the-arts: DAP [59], UA-MT [51], SASSNet [60],
LG-ER-MT [61], DUWM [62], DTC [63], and MC-Net [58]. Evaluation results
are illustrated in Table 7, where the upper bound indicates the fully-supervised
result with all 80 labeled volumes, and the baseline is the result obtained only
using the partially labeled volumes. This dataset is a competitive benchmark
since the work of [51]. Existing methods successfully improve the baseline by a
large margin and reach comparable accuracy to the upper bound result. We note
that TriMix achieves competitive results with existing methods. Under the 1/10
partition protocol, TriMix outperforms the second-best method MC-Net [58] by
+0.75% in Dice and +1.28% in Jaccard.

Effectiveness of CutMix augmentation. We analyzed the impact of Cut-
Mix augmentation within TriMix on the LA dataset under 1/10, 1/5, and 1/2
partition protocols. Ablation results are illustrated in Fig. 5.

C.2: Semi-Supervised 2D Segmentation of Cardiac Structures

Data and evaluation metrics. We applied TriMix to semi-supervised 2D
segmentation of cardiac structures on the ACDC dataset [66]. Identical to the
work [42], we performed 5-fold cross-validation and adopted the 1/10 partition
protocol. For data prepossessing, all slices were resized to 256×256 pixels, and
their intensity was normalized to [0,1]. We will report results in Dice and 95HD.

Implementation details. The 2D U-Net architecture [67] was utilized as
the backbone. The cropped area ratio of the CutMix augmentation was set to
0.2. We used SGD with a weight decay of 0.0001 and a momentum of 0.9 to
optimize TriMix for a total of 60000 iterations under a poly learning rate with

Table 8. Comparison with other semi-supervised methods on ACDC dataset.
Other average (standard deviation) results are from [42]. †: method with ensemble
strategy.

method
RV Myo LV avg

Dice 95HD Dice 95HD Dice 95HD Dice 95HD

upper bound 88.2 (9.5) 6.9 (10.8) 88.3 (4.2) 5.9 (15.2) 93.0 (7.4) 8.1 (20.9) 89.8 7.0
baseline 65.9 (26.1) 26.8 (30.4) 72.4 (17.6) 16.0 (21.6) 79.0 (20.5) 24.5 (30.4) 72.4 22.5

DAN [64] 63.9 (26.0) 20.6 (21.4) 76.4 (14.4) 9.4 (12.4) 82.5 (18.6) 15.9 (20.8) 74.3 15.3
AdvEnt [65] 61.5 (29.6) 20.2 (19.4) 76.0 (15.1) 8.5 (8.3) 84.8 (15.9) 11.7 (18.1) 74.1 13.5
MT [50] 65.3 (27.1) 18.6 (22.0) 78.5 (11.8) 11.4 (17.0) 84.6 (15.3) 19.0 (26.7) 76.1 16.3
UA-MT [51] 66.0 (26.7) 22.3 (22.9) 77.3 (12.9) 10.3 (14.8) 84.7 (15.7) 17.1 (23.9) 76.0 16.6

TriMix 85.6 (4.4) 8.2 (2.4) 86.9 (2.0) 3.8 (1.2) 92.3 (3.6) 5.3 (2.0) 88.2 5.8

TriMix† 86.1 (4.3) 7.8 (2.7) 87.3 (2.0) 3.7 (1.3) 92.5 (3.6) 5.0 (2.2) 88.6 5.5
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an initial value of 0.01. The batch size was set to 12 (6 labeled and 6 unlabeled
samples were fetched at each iteration.)

Experiment results. The validation results are shown in Table 8, where
we compare TriMix with other methods: Deep Adversarial Network (DAN) [64],
Adversarial Entropy Minimization (AdvEnt) [65], MT [50], and UA-MT [51].
The backbone U-Net trained with the partitioned labeled data obtained the
baseline performance. In addition, we treated the result yielded with the fully
labeled data as the upper bound accuracy. We note that TriMix significantly
improves the baseline by +15.8% in Dice and -16.7 in 95HD. Besides, TriMix
outperforms other existing methods by a large margin, obtaining the closest
accuracy to the upper bound performance.

C.3: Semi-Supervised 2D Segmentation of Abdominal Organs

Data and evaluation metrics. We additionally investigated the appli-
cation of TriMix to 2D segmentation with BTCV dataset7 that provides 50
abdomen CT volumes, 30 of which are training sets containing labels, and the
left 20 are testing sets without ground truth, and each volume consists of 85 to
198 slices with the size of 512 × 512 pixels. The work of [68] has extended the
ground truth to 47 volumes. We utilized the 47 volumes for method evaluation,
and we focused on three organs (spleen, left kidney, and liver) segmentation in
this study. Specifically, 47 volumes were split into 30 for training and 17 for
validation. 1/6, 1/3, and 1/2 volumes were further sampled as the labeled data,
and the remaining volumes were treated as unlabeled data. All 3D volumes were
downsampled by a factor of 0.5 on each axis, and intensities were normalized.
Besides, the 3D volumes were cut into 2D axial slices to fulfill the 2D training
strategy. The 2D predictions were stacked back to 3D volumes for evaluation in
the test phase. We applied Dice and 95HD as metrics.

Implementation details. We applied 2D U-Net [67] as the backbone. Dur-
ing training, an SGD optimizer was adopted to update our model, with a mo-
mentum of 0.9 and weight decay of 0.0001. The batch size was set to 8, i.e., eight
labeled samples and eight unlabeled samples were fetched at each iteration. Fol-
lowing a poly learning rate policy, the learning rate was set to 0.01 multiplied by
(1− k

K )0.9 at each iteration, where k is the current iteration, and K is the pre-
defined maximum iteration. TriMix was trained 100 epochs. The cropped area
ratio of CutMix was empirically set to 0.2.

Experiment results. We re-implemented several consistency-based meth-
ods and compared them with ours. These methods were Mean Teacher (MT) [50],
uncertainty-aware Mean Teacher (UA-MT) [51], and CutMix-seg [53]. Quantita-
tive results of the BTCV dataset are shown in Fig. 6. We can note that TriMix
substantially outperforms the baseline with gains of 7.9%, 3.8%, and 3.2% in
Dice, and reductions of 13.4, 7.5, and 5.4 in 95HD, under the 1/6, 1/3, and 1/2
partition protocols, respectively. Besides, under 1/3 and 1/2 partition protocols,

7 https://www.synapse.org/#!Synapse:syn3193805/wiki/89480
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Fig. 6. Application of TriMix to semi-supervised 2D segmentation on BTCV
dataset under different partition protocols: 1/6, 1/3 and 1/2. Resutlts are in Dice and
95HD. †: method with ensemble strategy. Overall, TriMix consistently improves
baseline and outperforms other existing methods across all partition pro-
tocols. TriMix obtains closer results to upper bound and sometimes appar-
ently surpasses it.

TriMix obtains closer results to the upper bound accuracy and sometimes appar-
ently surpasses it. TriMix outperforms other methods by a large margin, espe-
cially with the fewest labeled samples (1/6 partition protocol). For instance, our
method outperforms the second-best CutMix-Seg by about 3.0% in Dice under
this setting. This validation shows that TriMix can be applied to 2D segmenta-
tion and achieves competitive results.

Appendix D: Visualization Results

D.1: Visualization Results of Semi-Supervised Segmentation

The visualization comparison of semi-supervised 3D and 2D segmentation
is shown in Fig. 7 and Fig. 8. For the hippocampus case, the performance gap
among triple networks in UMCT is large, and thus the ensemble strategy worsens
the result. We can note that TriMix obtains closer results to the ground truth
than previous methods on all datasets.

D.2: Visualization Results of Scribble-Supervised Segmentation

We show some visualization examples of the ablation study on different loss
combinations in Fig. 9, as supplementary material for Fig. 4. We can note that
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Lunmix
pce + Lmix

ce achieves better segmentation than Lunmix
pce and Lunmix

pce + Lmix
pce ,

and Lunmix
pce + Lmix

pce + Lmix
ce realizes the best performance.

We also show some visualization examples of good, medium, and worse seg-
mentation cases obtained by our method on the ACDC and MSCMRseg datasets
in Fig. 10.

ground truth UA-MT SASSNet DTCLG-ER-MT TriMix

image ground truth MT UAMT CutMix-Segbaseline

STS-MT CPS UMCT UMCT† TriMix TriMix†

image baseline MT UAMT CutMix-Seg

STS-MT CPS UMCT UMCT† TriMix TriMix†

ground truth

left atrium right ventricle myocardium left ventricle anterior posterior

TriMix†

Fig. 7. Visualization results of semi-supervised 3D segmentation, from top
to bottom: left atrium segmentation, cardiac multi-structure segmentation, and hip-
pocampus segmentation. † indicates method with ensemble strategy. TriMix obtains
closer results to ground truth than other methods.
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Fig. 8. Visualization results of semi-supervised 2D segmentation on BTCV
dataset. † indicates method with ensemble strategy. TriMix obtains closer results
to ground truth than other methods.
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Fig. 10. Visualization results of good, medium, and worse segmentation
cases on ACDC and MSCMRseg datasets. † indicates method with ensemble strategy.
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Algorithm 1 Training scheme of TriMix for semi-supervised segmentation.

Input: networks f1, f2, and f3 with different weights w1, w2, and w3, labeled dataset
Dl, unlabeled dataset Du, and total training epoch T

Output: networks f1, f2, and f3 with the updated weights w1, w2, and w3

1: while T is not reached do
2: Fetch mini-batch {xl,yl} ∈ Dl and mini-batch {xu} ∈ Du

# Step 1: first forward pass.
3: for i = 1, 2, 3 do
4: pli = fi(xl,wi)
5: pui = fi(xu,wi)
6: end for

# Step 2: mix augmentation.
7: for i = 1, 2, 3 do
8: {x̃ui , p̃ui} = random-shuffle-mini-batch {xu,pui}
9: end for
10: x̄u1 = Mix(x̃u2 , x̃u3), ŷu1 = Mix(p̃u2 , p̃u3)
11: x̄u2 = Mix(x̄u1 , x̄u3), ŷu2 = Mix(p̃u1 , p̃u3)
12: x̄u3 = Mix(x̃u1 , x̃u2), ŷu3 = Mix(p̃u1 , p̃u2)
13: for i = 1, 2, 3 do
14: ŷui = argmax (ŷui) # hard labels for pseudo supervision consistency.
15: end for

# Step 3: second forward pass.
16: for i = 1, 2, 3 do
17: p̄ui = fi(x̄ui ,wi)
18: end for

# loss calculation and update network parameters.
19: for i = 1, 2, 3 do
20: Li = Ldice(pli ,yl) + λLdice(p̄ui , ŷui)
21: wi = SGD(Li,wi)
22: end for
23: end while
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Algorithm 2 Training scheme of TriMix for scribble-supervised segmentation.

Input: networks f1, f2, and f3 with different weights w1, w2, and w3, dataset Ds

with scribble annotations, and total training epoch T
Output: networks f1, f2, and f3 with the updated weights w1, w2, and w3

1: while T is not reached do
2: Fetch mini-batch {xs,ys} ∈ Ds

# Step 1: first forward pass.
3: for i = 1, 2, 3 do
4: psi = fi(xs,wi)
5: end for

# Step 2: mix augmentation.
6: for i = 1, 2, 3 do
7: (x̃si , ỹsi , p̃si) = random-shuffle-mini-batch (xs,ys,psi)
8: end for
9: x̄s1 = Mix(x̃s2 , x̃s3), ȳs1 = Mix(ỹs2 , ỹs3), ŷs1 = Mix(p̃s2 , p̃s3)
10: x̄s2 = Mix(x̃s1 , x̃s3), ȳs2 = Mix(ỹs1 , ỹs3), ŷs2 = Mix(p̃s1 , p̃s3)
11: x̄s3 = Mix(x̃s1 , x̃s2), ȳs3 = Mix(ỹs1 , ỹs2), ŷs3 = Mix(p̃s1 , p̃s2)
12: for i = 1, 2, 3 do
13: ŷsi = argmax (ŷsi) # hard labels for pseudo supervision consistency.
14: end for

# Step 3: second forward pass.
15: for i = 1, 2, 3 do
16: p̄si = fi(x̄si ,wi)
17: end for

# loss calculation and update network parameters.
18: for i = 1, 2, 3 do
19: Li = Lunmix

pce (psi ,ys) + λ1L
mix
pce (p̄si , ȳsi) + λ2L

mix
ce (p̄si .ŷsi)

20: wi = SGD(Li,wi)
21: end for
22: end while
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