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1 Network Details

As illustrated in Fig. 1, the Spatio-Temporal Feature Encoding consists of 4
down blocks to the global information, and 4 up blocks. The global information
goes to the bidirectional GRU [1,2] with the objective to learn the interframe
information. In this architecture, the 3 last up blocks are associated with 1 x 1
convolution to yield the features Z!,1 = {0,1,2} at different levels. Fig. 2(a)
shows how the features Z! are fed into 3 3D convolution blocks. The weights
of these 3D convolutions are shared for [ = 0 and 1. Fig. 2(b) illustrates the
Implicit Surface Decoding. The layer dimensions of the MLP are 64, 64 and 1
respectively. The final output is activated with tanh.

2 Training and Inference Details

We render the depth images in resolution 5122 and train 336 4-frame sub-
sequences from scratch for 796 epochs. We use Adam [3] to optimize the network
with learning rate 1 x 10~%. During the inference, query points are chosen in a
grid of resolution 2563. We bi-linearly interpolate the feature V. It is then com-
bined with depth information and fed into a MLP to predict the SDF value. It
takes 1.04 second per frame, on average, for all SDF values inference. The mesh
surface is finally extracted using the marching cubes algorithm [6, 4].

Data CAPE DFAUST
Method IoU 1 Chamfer-L1 ||IoU 1 Chamfer-L1 |
4-frame pyramidal(|0.839 0.161 0.898 0.103
6-frame pyramidal|| 0.817 0.176 0.880 0.111
Table 1. Impact of the number of frames. Spatial completion with IoU and Chamfer-L1
distances (x107') in the real 3D space.
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Fig. 1. Spatio-Temporal Feature Encoding.
duration 100ms 200ms 300ms 400ms 500ms

STIF [10]|| 0.857/0.107 0.852/0.108 0.855/0.109 0.852/0.111 0.850/0.111
ours  ||0.900,/0.095 0.900,/0.095 0.900,/0.096 0.899/0.097 0.898/0.097
Table 2. Impact of the sequence duration (ms) in the test. Metrics are IoU/Chamfer-
L1 distances (x1071).

3 Local Pattern Reasoning

We render depth images from the raw scans, e.g. Fig. 3(a), and preserve there-
fore measurement noise. The signed distances are pre-computed from watertight
meshes, as obtained from the full scans and SMPL [5], see Fig. 3(c). Although
the SMPL fitting can be locally imperfect, as a result of the global fitting, our
network learns locally and naturally tends to reproduce the input depth informa-
tion as optimal predictions on average over all parts in all the training models.
This can be observed in Fig. 3 where the network better predicts the foot than
the SMPL fitting on the full scan.

4 Impact of Number of Frames

We consider 4 consecutive frames as it experimentally appears to be a good
trade-off between the quality and the computational cost. Absent any explicit or
estimated long term correspondence information of surface points, adding more
frames does not necessarily contribute, increases the GPU load during training
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Fig. 2. Detailed Architecture of (a) Pyramidal Feature Decoding and (b) Implicit Sur-
face Decoding.

Fig. 3. Local pattern reasoning. From left to right, (a) partial scan, (b) completion
with our method and (c) watertight pseudo ground truth with SMPL [5] on full scans.

and even leads to loss of precision. To illustrate this, we train the 6-frame-input
model in which there are 1 supervision for level 2, 3 supervisions for level 1 and
6 supervisions for level 0. The result in Tab. 1 is slightly degraded. Here we use
the same test data as in Tab. 1 of the paper. We believe that the network would
require a more complex additional stage of explicit correspondence estimation
to propagate details from more distant frames, which in our mind is a different
contribution altogether worthy of exploration in future work. Conversely, our
method offers an interesting trade-off already improving the quality of geometric
estimation, that doesn’t require dealing with correspondences.

5 Impact of Sequence Duration

During the training, we use both the short and long term intervals, resulting in
sequences of 200ms and 500ms respectively. To give more insights on the impact
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of the sequence duration, we provide results with the same trained network but
with different frame interval values for testing on the STIF [10] benchmark, in
Tab. 2. We give also the comparison with STIF that shows that our architecture
improves for all sequence durations and is more robust for long-term sequence
completion.
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Fig. 4. Some challenging cases. We show (a) the partial real scan data and (b) our
completion. For each sub-sequence, we show 2 consecutive frames for CAPE and 2
random poses for THuman2.0.

6 Challenging Cases

In Fig. 4, we show the completion for the scan of CAPE [7] with real missing
holes during acquisition, and for THuman2.0 [9] data. We focus on front-view
completion and consider missing data in the real scan (red arrow in Fig. 4). We
note that THuman2.0 is not a 4D motion dataset and we use the pre-trained
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model presented in the paper without retraining on the new data. Even if the
temporal consistency is no longer held and the geometry is challenging in THu-
man2.0, our proposed method can still give physically plausible results.

7 Limitations
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Fig. 5. Failure cases. (a) Partial scan and (b) completion with our method.

It can be observed that some noise may be introduced by our approach on
certain datasets which present self-occlusions. This is a common limitation of
monocular approaches with 2D convolutional representations [8]. The perfor-
mance degrades rather gracefully inasmuch as no observations of the occluded
surface are available and the problem is ill-posed (Fig. 5(left)). More global hu-
manness constraints could be added in the future to improve over this. Stronger
degradations such as the one observed in Fig. 5(right) may occur when strong
self-occlusions are compounded with poses that are far from the ones compiled
in the training set. Note that the results shown in Table 2 of the paper include
the reconstructions of this figure (Fig. 5), and still demonstrate a significant
improvement over all state-of-the-art approaches compared to.
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