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Abstract. With the possibility of deceiving deep learning models by appropri-

ately modifying images verified, lots of researches on adversarial attacks and 

adversarial defenses have been carried out in academia. However, there is few 

research on adversarial attacks and adversarial defenses of point cloud semantic 

segmentation models, especially in the field of autonomous driving. The stabil-

ity and robustness of point cloud semantic segmentation models are our primary 

concerns in this paper. Aiming at the point cloud segmentation model Range-

Net++ in the field of autonomous driving, we propose novel approaches to im-

prove the security and anti-attack capability of the RangeNet++ model. One is 

to calculate the local geometry that can reflect the surface shape of the point 

cloud based on the range image. The other is to obtain a general adversarial 

sample related only to the image itself and closer to the real world based on the 

range image, then add it into the training set for training. The experimental re-

sults show that the proposed approaches can effectively improve the Range-

Net++'s defense ability against adversarial attacks, and meanwhile enhance the 

RangeNet++ model's robustness. 

Keywords: Adversarial Attacks, Adversarial Defenses, Semantic Segmenta-

tion, RangeNet++, Local Geometry, Adversarial Samples. 

1 Introduction 

As part of the 3D point cloud scene understanding, semantic segmentation is a very 

important task in the field of autonomous driving. Semantic segmentation assigns a 

class label to each data point in the input modality, where a data point can be a pixel 

from a camera or a 3D point acquired from a radar. A stable semantic segmentation 

model can greatly improve the safety of autonomous driving systems. However, most 
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semantic segmentation models perform poorly when facing the adversarial attacks 

and they have fairly weak adversarial defenses.  

 

Fig. 1. Velodyne HDL-64E laser scan from KITTI dataset[1] with semantic information from 

RangeNet++. Best viewed in color, each color represents a different semantic class [2].  

In recent years, there are many researches on applying adversarial attacks and adver-

sarial defenses to various practical scenarios. Weng et al. [3] used adversarial attacks 

to find flaws in image QR codes. Wu et al. [4] summarized methods for image gen-

eration and editing based on adversarial networks. Deng et al. [5] proposed a hippo-

campal segmentation method that combines residual attention mechanism with gener-

ative adversarial networks. However, there have been few studies on adversarial at-

tacks and adversarial defenses of point cloud semantic segmentation models.   

The essence of adversarial attack is to generate adversarial disturbances that can 

mislead model judgments and add them to samples. Therefore, how to generate ag-

gressive and versatile adversarial samples is the focus of this research, while adversar-

ial defense mainly focuses on improving the robustness of the model so that the mod-

el can still work normally in the face of disturbance. Among them, adding adversarial 

samples to the training set is a commonly used method for adversarial defense.  

As one of the best point cloud semantic segmentation methods in the field of au-

tonomous driving, the basic concept of RangeNet++ is to convert the point cloud into 

a range image, and then put it into a 2D convolutional network for learning, so as to 

obtain the label of the point. An example of RangeNet++ is shown in Fig. 1. Howev-

er, the semantic information about the point cloud contained in the range image is too 

simple, which is not enough to support the model's good performance under adversar-

ial attacks. Therefore, we can enrich the semantic information of the point cloud by 

obtaining the local geometric features of the points, so that the model has better ro-

bustness. 

In this paper, we improve the security and anti-attack capability of the RangeNet++ 

model in two ways.  

One is to add adversarial samples to the training set. We propose a method to ob-

tain perturbation based on the surrounding local information of each point in the range 

image. Considering the fact that the semantic segmentation model classifies each 
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point based on the feature differences between different objects, our method of gener-

ating adversarial samples calculates the average feature difference of each point and 

all points around it based on the range image. By adding the feature difference be-

tween each point and its surrounding points, the feature difference will become 

blurred, which makes it difficult for the semantic segmentation model to obtain the 

unique feature values of different objects and ensures the effectiveness of adversarial 

samples.  

The other method is designed in such a way that instead of directly extracting local 

features for each point in the point cloud, we will calculate the difference between the 

normal vectors of different triangular patches formed by each point in the image and 

the surrounding points according to the range image to obtain the local geometry fea-

tures. Such features reflect the topographic features of the 3D point cloud surface, 

thereby they will be increasing the semantic information of the point cloud.   

In summary, contribution of our work are as follows:  

i)  A method for generating local features of point cloud based on range image and 

reflecting the geometric shape of point cloud.  

ii)  A method for generating general adversarial samples based on range image that 

are closer to the real world and adding them to the training set. 

iii) Adversarial attack against RangeNet++ added to our method and original 

RangeNet++. 

The rest of this paper is organized as follows. Section Ⅱ presents a brief introduc-

tion to related works of local features of point clouds and adversarial examples. In 

Section Ⅲ, we describe the methodology of local feature extraction, and the genera-

tion of adversarial samples are also detailed. In Section Ⅳ, experimental results and 

the analysis are presented. Section Ⅴ concludes this paper. 

2 Related Work 

2.1 Local Features of Point Clouds 

Point cloud features are mainly divided into single point features, local features and 

global features. Single point features only focus on their own details, ignoring global 

information, and global features cannot describe the details sufficiently. In contrast, 

local features strike a balance between these two aspects.  

Rusu et al. [6][7] proposed to use point feature histograms (PFH) to obtain the 

shape information of the local surface. Using this method to describe point cloud 

features can extract rich information, but the computational complexity is high. It is 

also computationally expensive, especially for feature extraction tasks on large point 

cloud data.  

In order to solve this problem, the Fast Point Feature Histograms (FPFH) method 

[8] reduces the computational complexity of the algorithm at the expense of reducing 

feature information by simplifying the interconnection characteristics of the PFH 

58



4 

center point neighborhood, but it is simply affected by the point cloud sampling den-

sity. The feature distribution will be quite different when facing different sampling 

scales.  

The Viewpoint Feature Histogram (VFH) [9] operator uses the angle between the 

viewpoint direction and the normal to the sampling point as a feature. However, VFH 

loses the property of rigidly maintaining the relative positional relationship between 

point clouds, and has poor performance in point cloud segmentation and registration. 

Splash descriptor [10] describes local features by calculating the angle component 

between the normal vector of the key point and the normal vector of all points in the 

neighborhood.  

Inspired by these works, we take the points in the range image as the key points, 

calculate the normal vectors of several triangular patches formed between itself and 

other key points in the neighborhood, and take the cosine value of any included angle 

between two normal vectors as the local feature of the point cloud. This feature can 

satisfactorily describe the surface shape of the point cloud in the neighborhood of the 

key points, better utilizing the morphological features of the point cloud. 

2.2 Generation of Adversarial Examples 

The key to adversarial sample generation is to find suitable and effective adversarial 

maneuvers. The fast gradient sign method (FGSM) proposed by Ian J et al.  [11] max-

imizes the loss function to obtain the corresponding perturbation by backpropagating 

the gradient. Based on this, the DeepFool method proposed by Moosavi et al. [12] 

aimed at the selection of artificially specified perturbation coefficients in FGSM. This 

method firstly obtains good-performance adversarial samples by calculating the min-

imum necessary perturbation. Algorithms such as FGSM and DeepFool are all focus-

ing on adversarial samples with different perturbation degrees for each adversarial 

sample generated by a single sample. In a work based on DeepFool, Moosavi et al. 

[13] extended it to propose a noise independent of the input image, known as Univer-

sal Adversarial Perturbations (UAP), which could destroy most natural images and 

would become a universal adversarial noise that could be trained offline and generate 

interference to the corresponding output of a given model online. These methods all 

rely heavily on the model to be attacked, and the adversarial disturbances generated 

for a certain model often perform poorly for other models and have poor scalability. 

Xiang et al. [14] firstly proposed an adversarial sample generation method for 3D 

point clouds, and several new algorithms to generate adversarial point clouds for 

PointNet. However, on the one hand, the direct manipulation based on 3D point cloud 

will result in a large amount of computation. On the other hand, it is mainly used for 

adversarial sample generation of a single object and does not work well in point cloud 

segmentation where multiple objects exist.  

On the basis of the above work, we herein propose a model-independent adversari-

al perturbation generation method for the semantic segmentation model. By calculat-
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ing the difference between each point and its neighboring points in the image, the 

perturbation is generated to make the points in the image similar, so that the bounda-

ries of each object become blurred in the process of semantic segmentation then the 

effective adversarial sample can be obtained. 

 

Fig. 2. The flow of our model. (A) convert the point cloud into a range image according to the 

method in RangeNet++, (B) extract local features based on the range image, (C) generate ad-

versarial samples based on the range image, and put the new range image into the network of 

RangeNet++. 

3 Methods 

Our work is an improvement of the RangeNet++ model, which is carried out on the 

basis of range image, so we will first review the range image processing component in 

RangeNet++ in this section, and then introduce the local feature extraction method 

and adversarial samples generation method. 
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Our model is as follows: (A) convert the point cloud into a range image according 

to the method in RangeNet++; (B) extract local features based on the range image; 

(C) generate adversarial samples based on the range image, and then put the new 

range image into the network of RangeNet++. See Fig. 2 for details. 

3.1 Mapping of Points to Range Image 

For the points in the point cloud, the contained information of each of them includes 

coordinates (x, y, z) and remission. To obtain accurate semantic segmentation of point 

clouds, RangeNet++ converts each point cloud into a depth representation. To achieve 

this, it converts each point 𝑝𝑖 = (𝑥, 𝑦, 𝑧) to spherical coordinates by mapping Π: 

R^3 → R^2, and finally to image coordinates, we denote the height and width of the 

range image by H, W, while using u, v to represent the mapping of each point to the 

range image, then this mapping can be defined as: 

 (𝑢
𝑣
) = (

1

2
[1−arctan⁡(𝑦,𝑥)𝜋−1]𝑊

[1−(arcsin(𝑧𝑟−1)+𝑓𝑑𝑜𝑤𝑛)𝑓
−1]𝐻

) (1) 

where, 𝑟 = ⁡√𝑥2 + 𝑦2 + 𝑧2⁡ represents the depth of each point, and 𝑓 = ⁡𝑓𝑢𝑝 +

𝑓𝑑𝑜𝑤𝑛⁡⁡is the vertical field-of-view of the sensor. With this approach, we get a list of 

(u, v) tuples containing a pair of image coordinates for each 𝑝𝑖 . For each 𝑝𝑖 , we ex-

tract its distance r, its x, y, and z coordinates, and its remission, and store them in the 

image, ultimately creating a [5 × h × w] tensor. 

3.2 Local Feature Extraction 

It should be noted that, after we obtain the mapping of each point on the range image, 

for the multiple points contained in each pixel, RangeNet++ selects the minimum 

depth point to represent this pixel, since there are multiple points mapped to the same 

pixel.  

In order to ensure the proposed time complexity advantage of the RangeNet++ 

model, we did not choose to directly extract local features for each point in the point 

cloud, but relied on the corresponding points that their index could be used to easily 

find in the range image so as to quickly obtain its neighbor points, thus completing 

the extraction of local features.  

Specifically, we first extract the neighborhood points of each point 𝑝𝑖  in the range 

image in four directions: up, down, left, and right, namely  𝑝𝑢, 𝑝𝑑, 𝑝𝑙 , 𝑝𝑟. With 𝑝𝑖  and 

the four points around it, we can get four vectors： 

 {

𝒏𝒖𝒊 = 𝑝𝑢 − 𝑝𝑖
𝒏𝒅𝒊 = 𝑝𝑑 − 𝑝𝑖
𝒏𝒍𝒊⁡⁡ = 𝑝𝑙 − 𝑝𝑖
𝒏𝒓𝒊 = 𝑝𝑟 − 𝑝𝑖

 (2) 
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Then, we use “×” to denote the Vector product. Meanwhile, we can get four planes, 

and each of which includes 𝑝𝑖  and two non-collinear neighbor points: (𝑝𝑖 , 𝑝𝑙 , 𝑝𝑢), (𝑝𝑖 , 

𝑝𝑟, 𝑝𝑢), (𝑝𝑖 , 𝑝𝑙 , 𝑝𝑑 ), (𝑝𝑖 , 𝑝𝑟, 𝑝𝑑). We use their normal vectors to represent them: 

 {

𝒏𝟏 = 𝒏𝒍𝒊 × 𝒏𝒖𝒊
𝒏𝟐 = 𝒏𝒓𝒊 × 𝒏𝒖𝒊
𝒏𝟑 = 𝒏𝒍𝒊 × 𝒏𝒅𝒊
𝒏𝟒 = 𝒏𝒓𝒊 × 𝒏𝒅𝒊

 (3) 

𝒏𝟏,𝒏𝟐,𝒏𝟑,𝒏𝟒 represent the directions of the four planes. Then, we calculate the an-

gle between these normal vectors, here we use the cosine of the angle to represent the 

angle: 

 

{
 
 

 
 
𝜃1 = 𝑐𝑜𝑠 < 𝒏𝟏, 𝒏𝟐 >
𝜃2 = 𝑐𝑜𝑠 < 𝒏𝟏, 𝒏𝟑 >
𝜃3 = 𝑐𝑜𝑠 < 𝒏𝟏, 𝒏𝟒 >
𝜃4 = 𝑐𝑜𝑠 < 𝒏𝟐, 𝒏𝟑 >
𝜃5 = 𝑐𝑜𝑠 < 𝒏𝟐, 𝒏𝟑 >
𝜃6 = 𝑐𝑜𝑠 < 𝒏𝟑, 𝒏𝟒 >

⁡⁡ (4) 

Finally, we add these 6 values to the [5, H, W] tensor created in the previous sec-

tion to get a [11, H, W] tensor and put it into the RangeNet++ semantic segmentation 

convolutional network for learning.  

3.3 The Generation of Adversarial Samples 

Our work on adversarial sample generation is based on range image. The basic con-

cept is as follows: firstly, obtain the difference between each point in the range image 

and each point in the surrounding neighborhood, and then multiply it by a perturba-

tion parameter, which determines the strength of the adversarial attack, so as to obtain 

an adversarial perturbation, and generate adversarial samples. 

For the semantic segmentation model, its essence is to find the feature differences 

between different objects. The smaller the differences are, the more blurred the differ-

ent objects become, and the semantic segmentation model is more difficult to play a 

role. 

Therefore, in the first step, we need to calculate the difference between each point 

𝑝𝑖  in the range image and its surrounding points 𝑝𝑗(𝑗 = 1,2, … ,8): 

  𝑑𝑗 = 𝑝𝑗 − 𝑝𝑖⁡ (5) 

When getting the difference value from each surrounding point, we average these 

difference values to generate the average difference value 𝑑𝑖: 

 𝑑𝑖 =
1

8
∑ 𝑑𝑗
8
𝑗=1  (6) 
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𝑑𝑖 can be used as an adversarial perturbation for the semantic segmentation model. 

In order to ensure that the adversarial samples are effective, we must have some 

control over the adversarial perturbation, so that it cannot be observed. Therefore, we 

set the perturbation parameter α, which is in the range [0.0, 1.0]. For the difference 

value obtained in Eq. (6), we multiply it by α as the final perturbation value. Then, we 

set the perturbation parameter α in the range [0.0, 1.0]. For the difference value ob-

tained in Eq. (6), we multiply it by α as the final perturbation value: 

 𝑟𝑖 = α ∗ 𝑑𝑖 (7) 

Finally, the perturbation generated by each point is added to the sample, and the 

corresponding adversarial sample is obtained. 

3.4 Adversarial Attacks Against Models 

In the previous subsection, we obtained adversarial examples based on range image. 

Using these adversarial examples, we design adversarial attacks against RangeNet++ 

and our model. The adversarial attack mainly consists of two parts. The difference 

between the two parts lies in the selection of the perturbation parameters α. In the first 

part, for each range image, we randomly select the perturbation parameters in the 

range of [0, 1] to achieve a more comprehensive attack. In the second part, we set the 

same perturbation parameters to conduct a more targeted attack on the model. 

Table 1. IoU [%] before and after adversarial attack. 

Approach RangeNet++ 

RangeNet++ 

+ 

Local Feature 

RangeNet++ 

+ 

Local Feature 

+ 

Adversarial Samples 

State Before After Diff Before After Diff Before After Diff 

car 80.2 60.1 20.1 79.1 67.1 12.0 80.2 79.8 0.4 

bicycle 16.4 7.5 8.9 15.9 7.2 8.7 16.6 12.4 4.2 

motorcycle 34.5 10.6 23.9 34.2 20.3 13.9 30.6 29.8 0.8 

truck 3.5 1.7 1.8 2.0 0.9 1.1 4.8 3.5 1.3 

other-vehicle 21.3 3.7 17.6 22.0 11.4 10.6 21.0 20.6 0.4 

person 15.1 10.8 4.3 12.3 8.8 3.5 13.9 14.1 -0.2 

bicyclist 35.4 16.8 18.6 33.8 25.5 8.3 33.9 33.6 0.3 

motorcyclist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

road 89.8 73.0 16.8 91.0 77.1 13.9 90.1 90.3 -0.2 

parking 49.7 27.7 22.0 52.0 28.1 23.9 48.9 48.7 0.2 

sidewalk 76.2 49.6 26.6 77.9 54.7 23.2 76.6 76.9 -0.3 

other-ground 0.0 0.1 -0.1 0.1 0.5 -0.4 0.0 0.0 0.0 

building 76.5 60.9 15.6 77.2 73.0 4.2 77.1 77.0 0.1 

fence 46.1 22.4 23.7 44.6 25.8 18.8 48.7 48.5 0.2 
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4 Experiments and Results 

Dataset: We use SemanticKITTI as experiment dataset, which is a sub-dataset of 

KITTI in the direction of semantic segmentation. It annotates all sequences in the 

KITTI Vision Odometry Benchmark and provides dense point-by-point annotations 

for the full 360° field of view of the automotive LiDAR used in[2]. It includes a total 

of  22  sequences,  of  which  sequences 00-10 are the training set and sequences 11-

21 are the test set. 

Parameters: To get objective and fair results, we train Rangenet++ and our model 

with the same parameters. We choose the sequences 00-05 as the training set, 07-10 

as the test set, and 06 as the validation set. Meanwhile, we train each model for 100 

epochs. We employ random perturbation parameters in the first experiment, i.e. α ∈

[0.0, 1.0], and specific perturbation parameters in the second experiment, i.e. α ∈

{0.2, 0.4, 0.6, 0.8, 1.0 }. 

To ensure consistency, we chose the same evaluation metric as in RangeNet++. 

That is, we use the mean intersection over union (mIoU) over all classes [6], with the 

following formula: 

 𝑚𝐼𝑜𝑈 =
1

𝐷
∑

𝑇𝑃𝑑

𝑇𝑃𝑑+𝐹𝑃𝑑+𝐹𝑁𝑑

𝐷
𝑑=1 ⁡ (8) 

 where 𝑇𝑃𝑑 , 𝐹𝑃𝑑 ⁡and 𝐹𝑁𝑑 correspond to the number of true positive, false positive, 

and false negative predictions for class d and D is the number of classes. 

4.1 Adversarial Attacks with Randomly Perturbed Parameters 

The first experiment aims to demonstrate the effectiveness of the two methods pro-

posed in this paper, that is, to improve the security and anti-attack capability of 

RangeNet++ in the face of adversarial attacks. Therefore, we compare the defense 

ability of the original RangeNet++ with the RangeNet++ with only local features 

added and the model containing local features and adversarial samples in the face of 

adversarial attacks. 

Table 1 shows the changes of the IoU of these three models before and after 

being attacked. As can be seen from Table 1, compared to the original Range-

vegetation 75.0 50.6 24.4 76.0 63.4 12.6 75.9 76.0 -0.1 

trunk 37.8 34.3 3.5 39.5 37.3 2.2 32.0 32.6 -0.6 

terrain 61.5 38.5 23.0 64.9 45.5 19.4 64.1 64.1 0.0 

pole 27.6 24.3 3.3 31.6 28.5 3.1 29.6 29.2 0.4 

traffic-sign 27.2 20.7 6.5 29.4 26.3 3.1 25.3 25.2 0.1 

meanIoU 40.7 27.0 13.7 41.2 31.7 9.5 40.5 40.1 0.4 

meanAcc 83.4 67.7 16.6 85.0 74.5 10.5 84.9 84.9 0.0 
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Net++, the RangeNet++ added to our method performs better in the face of adver-

sarial attacks. More specifically, the RangeNet++ that only contains local features 

is improved compared to the original RangeNet++ and the RangeNet++ that in-

cludes both methods have a higher improvement, which fully shows that our two 

methods are both effective in improving the defense capability of the Range-

Net++. 

 

Fig. 3. Experimental results: mIoU with different perturbation parameters. 

4.2 Adversarial Attack with Specified Perturbation Parameters 

The second experiment demonstrates the effectiveness of adversarial attacks based on 

the adversarial samples proposed in this paper. Fig. 3 shows the variation of mIoU for 

the three models under different parameters, which represent adversarial attacks of 

different strengths.  

As can be seen from Fig. 3, as the perturbation parameter increases, the mIoU of  

the three models gradually decreases, which proves the effectiveness of adversarial 

samples. At the same time, we can find that our method has better performance in the 

face of different levels of adversarial attacks, which further illustrates that our method 

can improve the defense ability of the RangeNet++. 
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5 Conclusions 

In this work, we proposed two methods to improve the security and anti-attack capa-

bility of the semantic segmentation model RangeNet++. One was to extract the local 

geometric features of each point reflecting the topographic features of the point cloud 

based on the range image. The other was to generate adversarial examples against the 

semantic segmentation model based on the range image. And then we put them into 

the training set. Through experiments, we demonstrated the effectiveness of these two 

methods. Moreover, the adversarial attack based on our designed adversarial samples 

also had good performance for the RangeNet++ model. 
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