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Abstract. As the community progresses towards automated Universal Lesion
Detection (ULD), it is vital that the techniques developed are robust and easily
adaptable across a variety of datasets coming from different scanners, hospitals,
and acquisition protocols. In practice, this remains a challenge due to the com-
plexities of the different types of domain shifts. In this paper, we address the
domain-shift by proposing a novel domain adaptation framework for ULD. The
proposed model allows for the transfer of lesion knowledge from a large labeled
source domain to detect lesions on a new target domain with minimal labeled
samples. The proposed method first aligns the feature distribution of the two
domains by training a detector on the source domain using a supervised loss,
and a discriminator on both source and unlabeled target domains using an ad-
versarial loss. Subsequently, a few labeled samples from the target domain along
with labeled source samples are used to adapt the detector using an over-fitting
aware and periodic gradient update based joint few-shot fine-tuning technique.
Further, we utilize a self-supervision scheme to obtain pseudo-labels having high-
confidence on the unlabeled target domain which are used to further train the
detector in a semi-supervised manner and improve the detection sensitivity. We
evaluate our proposed approach on domain adaptation for lesion detection from
CT-scans wherein a ULD network trained on the DeepLesion dataset is adapted
to 3 target domain datasets such as LiTS, KiTS and 3Dircadb. By utilizing adver-
sarial, few-shot and incremental semi-supervised training, our method achieves
comparable detection sensitivity to the previous methods for few-shot and semi-
supervised methods as well as to the Oracle model trained on the labeled target
domain.

1 Introduction

Universal Lesion Detection (ULD) aims to assist radiologists by automatically detect-
ing lesions in CT-scans across different organs [1–4]. Although, existing ULD networks
perform well over a trained source domain, they are still far from practically deployable
for clinical applications due to their limited generalization capabilities across target
datasets acquired using different scanners and protocols. This domain shift often de-
grades the detection performance of ULD by over 30-40% when tested on an unseen
but related target domain.

A naive approach to circumvent domain-shift is to fine-tune a ULD network, trained
on source domain, over sufficient labeled target domain samples. However, obtaining
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Fig. 1. Visualization of knowledge space of the detector for different adaptation methods across
source and target domain. UDA stands for unsupervised domain adaptation. Here, we utilize fea-
ture alignment property of unsupervised domain adaptation (UDA) along with few-shot labeled
samples from target domain to widen the knowledge space of the detector network for precise
lesion detection.

requisite amount of annotations in every new domain is impractical due to the expen-
sive and time-consuming annotation process. Simple fine-tuning may improve sensi-
tivity on the target domain but it suffers from performance drop on the source domain
which is not desirable in practical scenarios. For example, when a new CT-machine is
added to a facility, then it is expected from a ULD network to maintain its detection
sensitivity on new datasets along with the source domain. Therefore, domain adapta-
tion [5–8] is the most effective and widely used technique to easily transfer knowledge
from source to new unseen target domains. Widely, there are two approaches to reduce
the domain-gap between source and target domain, either by image-to-image trans-
lation or by aligning the feature-space. In image-to-image translation techniques [9,
10], researchers have utilized networks such as StyleGAN [11], CycleGAN [10, 12,
13] etc. to generate source images in the style of target images and train a network on
the target translated source-images. On the other hand, in feature-space alignment tech-
niques [14–18], authors align the feature-space between source and target domain using
either unsupervised adversarial training or prototype alignment. The underlying idea is
to generate non-discriminatory features such that the discriminator cannot differentiate
between the domains and the task-network trained on a labeled source domain can give
similar performance on the new target domain. While large scale annotation of medical
scans is expensive, it is often feasible to obtain a few labeled target samples for real
world applications. This small amount of annotated data can often provide significant
gains for domain-adaptation [19–22].

To learn from few examples of rare objects, two-stage fine-tuning approach (TFA) [23]
is proposed where the detector network is first trained with abundant base images and
subsequently, only the last layer of trained detectors are finetuned by jointly train-
ing few samples from base classes and few samples available for rare/novel classes.
However, TFA can help to improve performance on rare classes only if the data for
rare classes belong to the same distribution as that of base/source classes.Similarly, in
another paper [24], a two-stage semi-supervised object detection method is proposed
where detector model is first trained with labeled source data followed by training on
unlabelled target data. It utilises an approach called Unbiased Teacher (UBT) where it
jointly trains a student and a gradually progressing teacher model by using pseudo la-
beling technique. The teacher model is provided with weakly augmented inputs and the
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generated pseudo-labels are used for the supervision of student model provided with
strongly augmented inputs. UBT is utilized to reduce the false positives in the gener-
ated pseudo labels, as these false positives can hinder the training process. We avoid the
complex student-teacher training by improving the quality of generated pseudo labels
by learning better initialization weights via UDA and joint few-shot finetuning.

In this paper, we propose a semi-supervised domain adaptation [25–27] approach
which utilizes a combination of unsupervised feature alignment at image as well as
instance level similar to Every Pixel Matters (EPM) [28], and few-shot labels from
the target domain to further expand the representation-space of the ULD network for
adaptation to the target domain, as visualized in Figure 1. Subsequently, we utilize
self-supervised learning where we apply the few-shot adapted ULD network on the un-
labeled target dataset and obtain pseudo labels using a high confidence threshold. These
pseudo labels are used to re-train the ULD network in a semi-supervised manner on the
unlabeled target domain. As the combined data for joint few-shot training is dominated
by the source domain [29], we train the network via a robust over-fitting aware and peri-
odic gradient update based training scheme which iteratively performs gradient updates
on source and target domain samples while accounting for the imbalance in the source
and target domain data. The proposed approach can be applied to different convolu-
tion based detection backbones and the performance of feature-space alignment based
unsupervised domain adaptation techniques can be enhanced and made comparable to
that of the Oracle detection network by incorporating few-shot training over target do-
main labels and semi-supervision using generated pseudo labels on an unlabeled target
dataset. To the best of our knowledge, there is very limited research on domain adapta-
tion for lesion detection [30] and we perform transfer of knowledge from a ULD model
trained on a large multi-organ dataset to organ-specific target datasets with minimal
labeled samples. To summarize, our contributions in this paper are as follows:

– We propose a novel semi-supervised domain adaptation network for ULD via ad-
versarial training, which utilizes few-shot learning for better understanding of the
target domain and pseudo-labels based self-supervised learning for more accurate
lesion detection on target domain. The network is named TiLDDA: Towards Uni-
versal Lesion Detection via Domain Adaptation.

– A simple anchor-free training scheme is used for lesion detection network which
has less design parameters and can handle lesions of multiple sizes from different
domains more effectively.

– We evaluate TiLDDA, trained over a source DeepLesion [31] CT dataset, and on 3
target datasets namely, KiTS [32], LiTS [33] and 3Dircadb [34]. The results show
consistent improvement in detection sensitivity across all target datasets.

– Owing to the non-availability of lesion detection datasets, we generate bound-
ing box (bbox) annotations of lesions from ground-truth pixel-level segmentation
masks on above 3 target domain datasets and release bbox annotations for bench-
marking and motivating further research in this area.
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Fig. 2. Overview of our proposed TiLDDA architecture. Source dataset S and unlabeled target
dataset TU are used to train discriminators DGA and DCA using adversarial losses Ladv

GA and
Ladv

CA for domain adaptation. Labeled source domain samples S and few labeled target domain
samples T train

L are used to train ULD detector in a few-shot way using supervised losses Lsup
S

and Lsup

T train
L

. Further, the few-shot domain adapted ULD is used to generate pseudo-labels on TU

having confidence above a threshold τ . Finally, the pseudo labels are used to re-train the detector
in a semi-supervised manner using loss Lsemi

TP
.

2 Methodology

Given a labeled dataset S = {(Xs, ys)} from a source domain DS , and a dataset T from
a different but related target domain DT split into: an unlabeled set TU = {X̃t} and a
much smaller labeled set T train

L = {(Xt, yt)}, where T = TU + T train
L . Both S and

T share the same task, i.e., given an input CT-image X , find the bounding box (Bbox)
of the lesion present y. Therefore, the aim of our proposed domain adaptation network
is to learn a single set of detector model parameters Gθ such that the model trained
on the source domain DS and few labeled target domain samples T train

L can work
efficiently on an unseen target test-set T test without degradation in lesion detection
performance. The different components of our proposed domain adaptation pipeline
(shown in Figure 2) are as follows:

2.1 Universal Lesion Detection

To cater to the need of detecting multi-sized lesions across different domains, we uti-
lize a robust anchor-free lesion detector (G) based on a fully convolutional one-stage
(FCOS) [35, 3] network which performs detection in a per-pixel prediction fashion
rather than utilizing the pre-defined anchor-boxes. As shown in Figure 2, for an in-
put image X , we first extract the feature maps (f i) at ith feature pyramid network
(FPN) level using a convolutional feature-extractor F . Next, using a fully-connected
detection head B, each pixel location (x, y) of f i is classified with probability (px,y) as
foreground (with class label c∗x,y = 1) or background (with class label c∗x,y = 0) and
then, for each positive pixel location, a 4D vector ux,y is regressed against the corre-
sponding ground-truth bbox annotation u∗

x,y . To further decrease the low-quality bbox
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detections, a single centerness layer (Ctr) branch is added in parallel with the regression
(Bbox) branch. It is used to give more preference to pixel locations that are present near
the center and filter out the pixels that have a skewed feature location inside the ground-
truth bbox (y) of the corresponding object. The centerness represents the normalized
distance between a particular pixel location and the center of the ground-truth bbox of
the corresponding object. The detection loss function, as used in FCOS [35], for ULD
baseline is defined as follows:

Ldet(px,y, ux,y) =
1

Npos

∑
x,y

Lcls(px,y, c
∗
x,y) +

λ

Npos

∑
x,y

1c∗x,y>0Lreg(ux,y, u
∗
x,y)

(1)

centerness =

√
min(l∗, r∗)

max(l∗, r∗)
× min(t∗, b∗)

max(t∗, b∗)
(2)

Here, Lcls and Lreg are the classification focal loss and regression IoU loss for
location (x, y), Npos is the no. of positive samples, λ is the balance weight, 1c∗x,y>0 is
an indicator function for every positive location, c∗ and u∗ are ground-truth labels for
classification and regression, respectively. For given regression targets l∗, t∗, r∗ & b∗ of
a location, the term centerness (as defined in Eq. 2) is trained with binary cross entropy
(BCE) loss Lctr and added to the loss function defined in Eq. 1 for the refined results.
Finally, the ULD network is trained using a supervised loss Lsup function as defined in
Eq. 3.

Lsup(X, y) = Ldet + Lctr (3)

2.2 Feature Alignment via Adversarial Learning

Here, as inspired by EPM network [28], we utilize unsupervised domain adaptation
(UDA) to align the feature distribution for both the domains, source DS and target DT ,
which would result in an increase in the detection sensitivity on the target domain test
dataset T test in an unsupervised manner. First, the detector network G is trained on S
using a supervised loss-function Lsup

S , as defined in Eq.3. To train the discriminators,
we first extract source (f i

s) and target (f i
t) feature maps by applying feature extractor

F on S and TU samples, and perform global feature alignment via a global discrimina-
tor DGA which is optimized by minimizing a binary cross-entropy loss Ladv

GA . This is a
domain-prediction loss that aims to identify whether the pixels on ith feature map (f i)
belong to the source / target domain. For a location (x, y) on f i, Ladv

GA can be defined as
below:

Ladv
GA(Xs, X̃t) = −

∑
x,y

z log (DGA(f
i
s)

(x,y)
) + (1− z) log (1−DGA(f

i
t )

(x,y)
) (4)

We set the domain label z of source and target as 1 and 0, respectively. Next, the
detection head B predicts pixel-wise objectness maps Mobj and centerness maps M cls
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Algorithm 1: Proposed Joint Few-shot Learning
Data: Source dataset S and few-shot labeled target dataset T train

L , detector model Gθ ,
and Hyper-parameters: α, β, and κ.

n(S), n(T train
L )← Total source and labeled target samples

for iterations = 1, 2, 3, ... do
Train-source: Gradients∇θ = G

′
θ(S; θ);

Updated parameters: θ
′
← θ − α∇θ ;

η = n(S)

n(T train
L

)∗κ ;

if (iterations mod η) = 0 do
Train-target: Gradients∇θ

′ = G
′

θ
′ (T train

L ; θ
′
) ;

Updated parameters: θ ← θ
′
− β∇θ

′ ;
else

θ ← θ
′

;

which are combined to generate a centre-aware map MCA [28]. The extracted feature
maps f i along with MCA are utilized to train another center-aware discriminator DCA

with domain-prediction loss Ladv
CA , as given in Eq. 5 in order to perform center-aware

alignment at the pixel level.

Ladv
CA(Xs, X̃t) = −

∑
x,y

z log (DCA(M
CA
s ⊙ f i

s)
(x,y)

)

+(1− z) log (1−DCA(M
CA
t ⊙ f i

t )
(x,y)

)

(5)

We apply the gradient reversal layer (GRL) [36] before each discriminator for ad-
versarial learning, which reverses the sign of the gradient while optimizing the detector.
The loss for the discriminators is minimized via Eq. 4 and Eq.5, while the detector is
optimized by maximizing these loss functions, in order to deceive the discriminator.
Hence, the overall loss function for UDA using δ and γ as balancing weights, can be
expressed as follows:

LUDA(S, TU ) = Lsup
S (Xs, ys) + δLadv

GA(Xs, X̃t) + γLadv
CA(Xs, X̃t) (6)

2.3 Proposed Joint Few-shot Learning (FSL)

Different from standard few-shot learning, where the tasks for target domain are differ-
ent from the source domain and hence, we either train the network on available source
samples first and then use the trained model weights as initialization or, in case of no
source domain, we can use weights from already trained models such as ImageNet
weights to fine-tune the task network on few target samples separately. Here in this
paper, we are trying to solve the domain shift problem where we have the same task,
i.e. lesion detection from CT-scans, for both the source (DS) and target (DT ) domains.
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Therefore, we can jointly fine-tune the ULD baseline G on a small labeled target do-
main dataset T train

L combined with the larger labeled source dataset S. However, this
setting suffers from data imbalance as the combined data is dominated by the source
domain and hence, the training will be biased towards the source domain. To mitigate
this issue, we propose a modified version of the few-shot training paradigm as given by
Algorithm 1, which aims to regularize the ULD network and enable it to focus more
on target domain samples without over-fitting on one particular domain. The idea is to
train the detector G on both domains by alternatively updating their weights so as to
ensure balanced updation across source and target samples. This is achieved by finding
the best possible gradient direction due to the shared parameter optimization of the two
losses. The loss on source train set S is computed using model parameter θ. The loss on
the target train set T train

L is computed using shared updated parameter θ
′
= θ − α∇θ

after each η iterations. To avoid over-fitting on target domain, we compute η such that
κ epochs of target are trained when 1 epoch of source is trained. We empirically deter-
mined the optimal value of κ = 3. The supervised loss function for the proposed FSL
is defined in Eq. 7, where 1η is an indicator function that takes a value of 1 after each η
iteration.

Lfew(S, T train
L ) = Lsup

S (Xs, ys, θ) + 1ηLsup
T train
L

(Xt, yt, θ
′
) (7)

2.4 Few-shot Domain Adaptation (FDA)

Next, we apply the adversarial learning (Ladv
GA and Ladv

CA) over source and target domain
for feature alignment with the proposed FSL (Lfew) on the combined domain. This
helps in increasing the similarity between the two domains via feature-alignment and
also widens the knowledge space of ULD by incorporating information from the target
domain in the form of few-shot labeled samples. The loss function for FDA is defined
as follows:

LFDA(S, TU , T
train
L ) = Lfew(Xs, Xt, ys, yt) + δLadv

GA(Xs, X̃t) + γLadv
CA(Xs, X̃t)

(8)

2.5 Self-supervision

As unlabeled samples TU of target domain are available in abundance, we utilize a
self-supervised learning mechanism to further improve the ULD performance on T by
expanding the few-shot labeled sample space for T . Here, we obtain bbox predictions
(ỹt), having confidence-score above a detection threshold (τ ), on unlabeled target sam-
ples X̃t by applying the few-shot adapted UDA network. Hence, we generate pseudo
samples (TP = {X̃t, ỹt}) to further fine-tune the FDA network in a semi-supervised
manner using (Lsemi

TP
) (defined in Eq. 9) on target domain.

Lsemi
TP

= Lsup(X̃t, ỹt) (9)
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Data split No. of Patients No. of Images No. of Lesions
KiTS T train

U 180 3914 4083
(230 Patients) T train

L 10 919 1305
T test 40 923 949

Data split No. of Patients No. of Images No. of Lesions
LiTS T train

U 80 4270 11932
(130 Patients) T train

L 10 847 2342
T test 40 2073 4571

Data split No. of Patients No. of Images No. of Lesions
3Dircadb T train

U 4 144 430
(15 Patients) T train

L 3 113 163
T test 8 311 676

Table 1. Data distribution of Target Domain Datasets T . Here, T train
U , T train

L and T test represent
the unlabeled train data, labeled few-shot train data and test-data.

3 Experiments and Results

3.1 Overall Training Scheme of TiLDDA

We train the ULD network G on source samples (S) and use the source domain weights
for initializing our proposed TiLDAA network. For domain adaptation on T , we first
train the detector G and discriminators DGA & DCA via the FDA training method
using loss defined in Eq. 8. Subsequently, we apply the adapted detector G on unlabeled
target images X̃t and generate pseudo-labels (TP = {X̃t, ỹt}). Next, we re-train the
ULD network using the semi-supervised loss defined in Eq. 9. Hence, the final objective
loss-function of our proposed TiLDDA network using hyper-parameters δ, γ, η, & λ is
as follows:

LTiLDDA(S, TU , T
train
L , TP ) = Lsup

S (S, θ) + δLadv
GA(Xs, X̃t) + γLadv

CA(Xs, X̃t)

+1η(Lsup
T train(T

train
L , θ

′
) + λLsemi

TP
(TP , θ

′
))

(10)

3.2 Data and Evaluation metric

We evaluate our TiLDDA network on lesion-detection from CT-scans by adapting the
ULD model trained on DeepLesion [31] as source domain dataset S to 3 different target
domain datasets T such as KiTS [32], LiTS [33] and 3Dircadb [34]. We provide details
for different Source and Target domain datasets as follows:

– Source Domain Database S: DeepLesion* is the largest publicly available multi-
organ lesion detection dataset, released by National Institutes of Health (NIH) Clin-
ical Center. It consists of approximately 32, 000 annotated lesions from 10, 594

*DeepLesion: https://nihcc.app.box.com/v/DeepLesion
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CT-scans of 4, 427 unique patients having 1-3 lesions bounding boxes annotated
for each CT scan by radiologists.

– Target Domain Database T : Since, we were unable to find relevant CT datasets for
lesion detection, we utilized the ground-truth segmentation masks for lesions pro-
vided in the following target datasets to generate the bounding box-annotations. To
introduce domain shift properly, we have selected target datasets that are collected
across different geographical locations. The details of these datasets are given as
below:
1. KiTS†: This cohort includes 230 CT-scans of patients who underwent partial or

radical nephrectomy for suspected renal malignancy between 2010 and 2018
at University of Minnesota Medical Center, US. The kidney-region and the
kidney-tumors in this dataset are annotated by experts and segmentation masks
are released publicly.

2. LiTS‡: This dataset consists of 130 pre- and post-therapy CT-scans released
by Technical University of Munich, Germany. The image data is also very di-
verse with respect to resolution and image quality. The manual segmentations
of tumors present in liver region are provided in the dataset.

3. 3Dircadb§: 3D Image Reconstruction for Comparison of Algorithm Database
(3Dircadb) released by Research Institute against Digestive Cancer, Strasbourg
Cedex, France. It consists of 15 CT-scans of patients with manual segmentation
of liver tumors performed by clinical experts.

Please refer Table 1 for data-split used for training and testing. For all the exper-
iments, we have used labeled data of 10 patients from LiTS and KiTS dataset. But
due to the very small size of 3Dircadb, we utilize labeled data of 3 patients only. The
idea behind using very small-sized 3Dircadb dataset is to evaluate how effectively the
proposed TiLDDA network can adapt with minimal target domain samples. As part
of pre-processing the CT-images, we include black-border clipping, re-sampling voxel
space to 0.8×0.8×2 mm3 and HU-windowing with a range of [−1024, 3072]. We also
perform data augmentations such as horizontal and vertical flipping, resizing and pixel
translations along x- and y-axis. For evaluation, average of detection sensitivities over
four false positive rates (FPs = {0.5, 1, 2, 4}) is computed and for all future references
in the paper, detection sensitivity means average detection sensitivity.

3.3 Experimental Setup

The feature extractor F is composed of ResNet-101 backbone along with 5 FPN levels
and the fully-convolutional block B consists of 3 branches for classification, regression
and centerness computations. For robust DA, feature alignment is done across all FPN
levels and the architectures of detector G and discriminators DGA & DCA are similar
to that used in EPM [28]. We implement TiLDDA in PyTorch-1.4 and train it on a

†KiTS: https://kits19.grand-challenge.org/data
‡LiTS: https://competitions.codalab.org/competitions/17094
§3Dircadb: https://www.ircad.fr/research/3d-ircadb-01
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Training scheme KiTS [32] LiTS [33] 3Dircadb [34]
Source Only (DeepLesion) (FCOS) [35] 34.2 36.7 37.3

Vanilla Few-shot 44.8 40.8 20.7
UBT (few-shot) [24] 36.4 40.2 18.7

UBT (few-shot + semi-supervision) [24] 44.1 47.3 27.2
TFA (joint few-shot) [23] 54.1 51.2 42.2

Proposed joint few-shot (FSL) 56.6 53.1 45.6
UDA (EPM) [28] 39.4 44.6 42.1

Fewshot DA (FDA) 58.6 53.8 47.1
Fewshot DA + Self-supervision (TiLDDA) 71.6 55.2 49.5

Oracle (Target only) 77 57.6 61.1
Table 2. Average sensitivity (%) on target datasets using different training schemes.

NVIDIA V 100 16GB GPU using a batch-size of 4. For all our experiments, we set the
values of κ, δ, γ, λ, and τ to 3, 0.01, 0.1, 0.5, and 0.7, respectively. The weights used
in GRL for adversarial training are set to 0.01 and 0.02 for DGA& DCA, respectively.
The detector network G for FDA is initialized using weights learned via pre-training
on source S. An SGD optimizer is used to train FDA network for 65, 000 iterations
with a learning rate of e−3 and decay-factor of 10 after 32, 000 and 52000 iterations.
For overall training of TiLDAA, FDA model is further fine-tuned on S and updated T
samples using a learning rate of e−4 for 25, 000 iterations.

3.4 Result and Ablation Study

The lesion detection sensitivity on S using the ULD baseline with ResNet-101 back-
bone is 80% and the aim of our proposed TiLDDA network is to perform well on target
domain dataset T as well while maintaining the performance on source domain. Table 2
presents the performance of different training schemes on test-split T test of target do-
main. The upper bound of detection sensitivity on T test is determined by supervised
training of the ULD baseline G directly on target samples (T train

U ) only in a supervised
manner and this setting is referred to as Oracle setting. The lower bound is computed
by evaluating the target T test-set T test directly using the ULD model trained on source
(S) only.

It is evident from Table 2 that there is a drop of about 30% to 40% in the detec-
tion sensitivity compared to that of Oracle setting due to the domain-shift issue. To
circumvent this issue, we begin by training the network using different few-shot tech-
niques without any domain adaptation. First, we use the vanilla few-shot finetuning,
where the ULD network is initialized with ImageNet weights and trained only using
few labeled target samples T train

L . As expected, the ULD network performs better as
compared to Source only training scheme on the test set T test, except for 3Dircadb
target domain where training samples are low. Next, we use a semi-supervised method
UBT proposed by Yen et. al [24] which utilizes pseudo labels along with few-shot
finetuning, there is a further improvement (7% to 8%) in detection sensitivity but it’s
still limited as lesion detection knowledge from source domain is not being utilized till
now by these methods. Hence, we also experimented with a two-step joint few-shot
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Training Scheme UaDAN [37] EPM [28]
Source Only (DeepLesion) 35.6 36.7

UDA 40.1 44.6
FDA 50.7 53.8

TiLDDA 52.8 55.2
Oracle 56.5 57.6

Table 3. Experiment to show that our proposed training scheme can be used with feature-space
alignment based unsupervised domain adaptation methods to further enhance their detection per-
formance. Average sensitivity (%) for LiTS test dataset using different training schemes applied
on UaDAN [37] method and EPM [28] method.

finetuning approach (TFA) [23], where we used the entire source domain data in sec-
ond step of fine-tuning resulting in a steep increase in the detection sensitivity value,
especially for the 3Dircadb target domain. This confirms that training target samples
with source samples can help to improve the detection sensitivity for the target dataset.
However, as mentioned in Section 2.3 simple joint few-shot training suffers from data-
imbalance issue, hence we train the network with our proposed joint few-shot training
scheme (FSL) described in Algorithm 1 and demonstrate an increase in sensitivity (2%
to 3%). Further, utilizing source domain data alone for handling domain shift issue is
not enough, hence we apply a UDA method which utilizes adversarial training to align
cross-domain features, similar to EPM [28], and observe that even without using any
data from target domain, there is a small but significant improvement (5% to 7%) in sen-
sitivity as compared to Source only training scheme. Subsequent to this, we combine
the UDA and proposed joint few-shot method for few-shot adaptation (FDA) to train the
ULD network and obtain an enhanced performance. At last, we generate psuedo labels
(TP ) using the FDA model and further, fine-tune it via TiLDDA model. It can be seen
clearly that we obtain a remarkable improvement (12% to 35%) in lesion detection as
compared to source only training using our proposed TiLDDA network with very few
labeled target samples.

Next, in order to support our claim that our proposed training scheme can be used
with different convolution-based detection backbones and the performance of feature-
space alignment based unsupervised DA methods can be improved, we utilize a UDA
method proposed in [37] and apply the proposed incremental training schema (joint
few-shot + pseudo label based self-supervision) on LiTS as target dataset. We observe a
similar trend for improvement of the lesion detection sensitivity as obtained with EPM
baseline used for TiLDAA, as shown in Table 3.

Further, we present the ablation-study in Table 4 on the number of few-shot labeled
samples (T train

L ) of different target domain datasets and hyper-parameter κ used in
Algorithm 1. We observe that 10 is the optimal number of few-shot labeled samples
to obtain best performance. But due to the very small size of 3Dircadb dataset, we
utilize labeled data of 3 patients only from 3Dircadb. As the combined data in few-shot
learning is dominated by source samples, so we train the network on target samples for
more number of epochs as compared to source domain using different values of κ and
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Target domain No. of patients n(T train
L ) κ Sensitivity (%)

1 81 1 46.3
5 428 1 50.3

LiTS 1 51.4
10 847 3 53.8

5 53.3
1 56.1

KiTS 10 919 3 58.6
5 57.1
1 45.4

3Dircadb 3 113 3 47.1
5 46.2

Table 4. Average sensitivity (%) for different number of labeled target samples (n(T train
L )) and

hyper-parameter κ for different target domains using FDA training scheme.

1:      Source Samples 2:      Target Samples 3:      Source Samples: Organ in common to target domain
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KiTS LiTS 3Dircadb

(a) (b)

Fig. 3. (a) The t-SNE visualization of source and target sample distributions before and after
using TiLDDA.(b) Effect of domain-adaptation on lesion-detection sensitivity of test-set of S
and T domain datasets. Here, DL refers to DeepLesion dataset.

found that a value of 3 is optimal that avoids the model from over-fitting over target
domain.

Additionally, we present a qualitative comparison using t-SNE [38] plots in Fig-
ure 3(a) to visualize the distribution from test-split of source DS and target DT domain
samples using Source-Only and TiLDDA training schemes. We extract embeddings of
the test-samples using feature extractor F . The labels 1, 2, and 3 correspond to sam-
ples from source, target and samples of source domain organ in common to the target
domain, respectively. The common organ of DeepLesion and, LiTS and 3Dircadb is
liver. However, the common organ of DeepLesion and KiTS is kidney. We can clearly
observe that after adaptation, the embeddings of target domain organs are now aligned
better with the common organ of source domain resulting in an enhanced detection sen-
sitivity for the target domain. It validates our claim that the detection knowledge from
source domain can be transferred to the target domain to improve the lesion detection
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Fig. 4. Qualitative comparison of Lesion Detection before and after using TiLDDA. Here green,
magenta, and red color boxes represent ground-truth, true-positive (TP), and false-positive (FP)
lesion detection, respectively.

performance. Further, we present the comparison of detection-sensitivity on test-set of
S and T datasets before and after applying TiLDAA in Figure 3(b). It can be seen that
the performance on source domain is maintained during domain adaptation and our pro-
posed method TiLDAA gives better detection sensitivity on target domain as compared
to the Source only trained model. Also, it is clearly evident in Figure 4 that TiLDDA is
able to reduce false positives and detect lesions which were missed using source-only
trained lesion detector.

4 Conclusion and Future Work

In this paper, we present a simple but effective self-supervision based few-shot domain
adaptation technique for ULD which can be used to enhance performance of existing
detection methods. We utilize multi-organ lesion detection knowledge from a larger
universal lesion detection source domain dataset to efficiently detect lesions on three
organ-specific target domains, and achieve comparable performance to the Oracle train-
ing scheme by utilizing only a few labeled target samples. We first adversarially align
the representation space of the two domains via unsupervised domain adaptation and
with a few labeled target samples, further fine-tune the detector in a semi-supervised
way using the self-generated pseudo labels. We experimentally show the efficacy of our
method by reducing the performance drop on unseen target domains compared to an
Oracle model trained on a fully labeled target dataset. In the current setup, both source
and target domains have a common task of detecting lesions from CT images across
a common set of organs. Going forward, we would like to propose a network that can
adapt to out-of-distribution organs and work across cross-modality domains.
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