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Abstract. Breast arterial calcifications (BACs) are frequently observed
on screening mammography as calcified tracks along the course of an
artery. These build-ups of calcium within the arterial wall may be as-
sociated with cardiovascular diseases (CVD). Accurate segmentation of
BACs is a critical step in its quantification for the risk assessment of
CVD but is challenging due to severely imbalanced positive/negative
pixels and annotation quality, which is highly dependent on annotator’s
experience. In this study, we collected 6,573 raw tomosynthesis images
where 95% had BACs in the initial pixel-wise annotation (performed by
a third-party annotation company). The data were split with stratified
sampling to 80% train, 10% validation and 10% test. Then we evalu-
ated the performance of the deep learning models deeplabV3+ and Unet
in segmenting BACs with varying training strategies such as different
loss functions, encoders, image size and pre-processing methods. During
the evaluation, large numbers of false positive labels were found in the
annotations that significantly hindered the segmentation performance.
Manual re-annotation of all images would be impossible owing to the
required resources. Thus, we developed an automatic label correction
algorithm based on BACs’ morphology and physical properties. The al-
gorithm was applied to training and validation labels to remove false
positives. In comparison, we also manually re-annotated the test labels.
The deep learning model re-trained on the algorithm-corrected labels
resulted in a 29% improvement in the dice similarity score against the
re-annotated test labels, suggesting that our label auto-correction algo-
rithm is effective and that good annotations are important. Finally, we
examined the drawbacks of an area-based segmentation metric, and pro-
posed a length-based metric to assess the structural similarity between
annotated and predicted BACs for improved clinical relevance.

Keywords: Breast arterial calcification · Deep learning · Segmentation.

1 Introduction

Mammography is a diagnostic imaging technique that is used to detect breast
cancer and other early breast abnormalities. During mammography, each patient
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normally has one mediolateral oblique (MLO) and one craniocaudal (CC) pro-
jections for the left and right breasts. Breast arterial calcifications (BACs) noted
on mammograms are calcium deposited in the walls of arteries in the breast [5],
appearing in various structures and patterns [7]. The presence and progression
of BACs have shown to be associated with coronary artery disease and cardio-
vascular disease (CVD) in recent clinical studies [16,20]. Prevalence of BACs in
screening mammograms has been estimated at 12.7% [12]. Breast radiologists
may note BACs as an incidental finding, but doing so is subjective and time-
consuming, thus automation may be beneficial. Computer aided detection is not
new, and several authors have reported promising BACs segmentation results
using either classical computer vision algorithms [7, 8, 10, 35] or deep learning
models [3, 11,28].

Deep learning models have gained increasing popularity in various medical
domains [22, 23] for their outstanding performance in different tasks such as
lesion detection [21], tumor segmentation [27] and disease classification [30] et
al. The performance of a deep learning model is typically influenced by hyper-
parameters chosen during model training. These include parameters related to
experimental factors such as epochs, batch size and input image size; parame-
ters related to training strategies such as loss function, learning rate, optimiser;
parameters related to model architecture such as number of layers and choice of
encoder. Kaur et al. [17] and Thambawita et al. [31] demonstrated how a model’s
performance could be improved by properly configuring the hyper-parameters.

Apart from hyper-parameters, the effect of annotation quality on object seg-
mentation has received little attention. In medical image segmentation especially
in the scope of BACs segmentation, it is hard or impossible to conduct suffi-
ciently sophisticated annotation due to cost and required domain expertise. Yu
et al. [37] indicated that medical imaging data paired with noisy annotation is
prevalent. Their experimental results revealed that the model trained with noisy
labels performed worse than the model trained using the reference standard.

To address the challenge of noisy labels, in this study we propose a label
correction algorithm to automatically remove false positives from manual BACs
annotations. The effect of the corrected labels is evaluated along with other
hyper-parameters such as image size, image normalisation methods and model
architectures. Finally, we analyse the drawbacks of area-based segmentation met-
ric, and propose a length-based metric to evaluate the structural similarity be-
tween annotated and predicted BACs for better clinical relevance.

2 Materials

2.1 Dataset

The de-identified image data were collected at a single health institution in the
United States. There are 6,573 raw tomosynthesis images acquired from two
x-ray systems: 5,931 from GE Pristina system and 642 from GE Senographe
Essential. GE Pristina images have a resolution of 2,850 × 2,394 and 0.1 mil-
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limeters per pixel; and GE Senographe Essential images have a resolution of
3,062 × 2,394 and 0.1 millimeters per pixel.

Digital breast tomosynthesis is a clinical imaging technology in which an x-
ray beam sweeps in an arc across the breast, producing tomographic images for
a better visibility of malignant structures [2]. In this study, we use the central
projection image from those collected in each scan for simplicity as the source
is normal to the detector for this image.

To the best of our knowledge, it may be one of the largest BACs datasets, and
the first one reported to use tomosynthesis images for training and evaluating
deep learning models. In comparison, other reported datasets are summarised in
Table 1.

Table 1. Literature Reported BACs Datasets.

Literature No. of Images BACs+ % Modality

[34] 840 60 2D mammography
[11] 661 NA 2D mammography
[28] 5,972 14.93 2D mammography
[3] 826 50 2D mammography

2.2 Annotation

The annotation task was performed using Darwin.v7labs1 by a third-party an-
notation company where the data were first split to batches then assigned to
multiple annotators. Cross check or consensus reading were not performed on
the annotation results, so each image was only reviewed by a single annotator.

All annotators have prior annotation experience in general domain, but little
specific medical knowledge especially in radiology. An introduction to BACs and
annotation guidance were supplied to each annotator. Briefly, the task is to use
the brush tool to label the BACs pixels. The first 50 annotated samples were
reviewed by an in-house imaging scientist with 3 years experience in mammo-
graphic image analysis. Upon the acceptance of these samples, the annotators
completed the remaining images.

3 Methods

3.1 Image Pre-processing

Digital mammography generally creates two types of images : raw and processed.
Raw images are the images as acquired, with some technical adjustment such
as pixel calibration and inhomogeneity correction; processed images are manip-
ulated from the raw images by manufacturer specific algorithm to enhance the

1 https://www.v7labs.com/
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Fig. 1. Seven consecutive years of mammograms for the same patient showing as pro-
cessed images by three different mammography systems (from left to right): Hologic,
GE, Hologic, Hologic, Siemens, Siemens, Siemens. Presentation of the processed im-
ages varies significantly based on the mammography system characteristics and image
processing.

Fig. 2. Demonstration of a compressed breast during mammography (left) and its
mammographic segmentation in craniocaudal (middle) and mediolateral oblique (right)
views. The compressed region (contact area) is labelled in white, pectoral muscle in
light gray and periphery in dark gray. The directly exposed area to x-ray beam is
labelled in black as background.

image contrast to better fit human eye response in detecting tissue lesions. Man-
ufacturers’ preferences in image processing may result in the same breast imaged
at two x-ray systems having distinctive appearances, as shown in Fig. 1. Further-
more, [36] reported a deep learning model trained from processed images from
one manufacturer cannot be transferred to an unseen external dataset, possibly
due to image inconsistency. In contrast, raw images record the original infor-
mation of the detector response, making it ideal for further image processing to
achieve a consistent contrast and visual appearance across different mammog-
raphy systems. Here, we presented three different normalisation methods in as-
cending complexity: simple gamma correction, self-adaptive contrast adjustment
and Volpara® density map. All three methods depend on a segmentation map
(see Fig. 2) labelling pectoral muscle, fully compressed and peripheral regions,
which were produced by VolparaDensity™ software. The segmentation accuracy
of the software was validated by Woutjan et al. [4].

Simple Gamma Correction Given a raw image Iraw, a logarithm transform
is applied on each pixel as in Eq. (1) [24] that brightens the intensities of the
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breast object:
I ln = ln(Iraw + 1.0) . (1)

Then, a gamma correction Eq. (2) is applied to the log-transformed image

Igamma = [(I ln − I lnmin)/(I
ln
max − I lnmin)]

1/2 , (2)

where I lnmin and I lnmax are the minimum and maximum pixel values respectively
in the breast region of I ln.

Self-Adaptive Contrast Adjustment The algorithm brings a given raw
mammogram Y0 to a target mean intensity Y in the breast region, by itera-
tively applying gamma correction. At each step, the gamma value is computed
as Eq. (3a), and the image is gamma corrected as Eq. (3b):

γi+1 = γi × ln(Y − Yi) (3a)

Yi+1 = Y
γi+1

i (3b)

where γ0 = 1, and Yi is the mean pixel intensity in the breast region after gamma
transformation in the previous step. After a set number of iterations, or after Yi

stops converging to the target Y , the process is terminated. See [19] for detailed
implementation.

Volpara® Density Map The Volpara® algorithm finds an area of the breast
within a region in contact with the compression paddle that corresponds to
entirely fatty tissues, referred as P fat, then using it as a reference level to compute
the thickness of the dense tissue hdt at each pixel location (x, y) based on Eq. (4)
[14,18]

hdt(x, y) =
ln(P (x, y)/P fat)

µfat − µdt
, (4)

where the pixel value P (x, y) is linearly related to the energy imparted to the
x-ray detector. µfat and µdt are the effective x-ray attenuation coefficients for fat
and dense tissues respectively at a particular peak potential (kilovoltage peak,
or kVp) applied to the x-ray tube [13]. Eq. (4) converts a raw mammographic
image to a density map where the pixel value corresponds to the dense tissue
thickness. The volumetric breast density is then computed by integrating over
the entire breast area in the density map. The VolparaDensity™ algorithm has
shown strong correlation with the ground truth reading (magnetic resonance
imaging data) [33] and its density measurements are consistent across various
mammography systems [9].

Figure. 3 shows the normalisation results of the above three methods on raw
images acquired from two x-ray systems. Despite the raw images are displayed in
the same intensity range, GE Pristina tomosynthesis is clearly brighter than the
GE Senographe Essential image, and the dense tissues are hardly visible in both
images. The simple gamma correction and self-adaptive contrast adjustment
stretch the contrast between fat and dense tissue in minor and moderate levels
respectively, while the Volpara® density map is a complete nonlinear transform
revealing the volumetric tissue properties.
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Fig. 3. Examples of normalising raw GE tomosynthesis in three different methods: sim-
ple gamma correction, self-adaptive contrast adjustment and Volpara® density map.
The 16-bit raw images (first column) are displayed in the same range of [62299, 65415]
for better visibility.

3.2 Other Training Variables

Apart from different image normalisation methods, we also investigated other
training variables as below:

– Image size: 1024× 1024 and 1600× 1600 2.
– Loss function: 1/2×(dice loss + MSE Loss) [29].
– Model architecture: see Table 2

Table 2. Deep learning models [15] in this study.

Model Name Architecture Encoder Parameters, M

UnetR Unet Resnet34 24.43
DeepLabV3+R DeepLabV3+ Resnet34 22.43
DeepLabV3+M DeepLabV3+ Mobilenetv3 large 100 4.70

2 In this study, we used a single Tesla T4 GPU, which can accommodate a maxi-
mum of batch size 3 and 1600 × 1600 input image size in the training phase. The
experiment of patch-based implementation on full resolution images is reported in
the Supplementary Material. We found its performance is not comparable with full
image implementation, and its slow inference is not practical in a busy clinical envi-
ronment (GPU is normally not available on a Picture Archiving and Communication
System).
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Fig. 4. Zoomed mammogram image sections for comparison between (b) third-party
initial BACs annotations and our (c) in-house secondary manual annotations on the
same (a) raw image (contrast enhanced for visualisation). In the top panel, micro
calcifications and linear dense tissues are initially labelled as BACs; in the bottom
panel, the edge of dense tissues is a false positive annotation.

3.3 Label Correction Algorithm

During evaluating the model performance, we discovered large amount of false
positives in the BACs annotations. Mostly seen are mislabelling micro-calcifications
and dense tissues as BACs, as shown in Fig. 4.

Instead of manually re-annotating all images, we developed a correction al-
gorithm that automatically removes these false positive labels based on BACs’
morphology. In [13], Highnam et al. derived Eq. (5) to calculate the calcification
thickness (millimeter) from a Volpara® density map:

hcalc(x, y) =
(µdt − µfat)(hdt(x, y)− hdt

bkg(x, y))

µcalc
. (5)

µcalc is the effective x-ray attenuation coefficient for calcification. Using the val-
ues of the linear attenuation coefficients at 18 keV: µdt = 1.028 and µcalc = 26.1.
hdt
bkg is the background tissue thickness, and can be estimated from morphologi-

cal opening operation as demonstrated in Fig. 5. Thus, a Volpara® density map
describing dense tissue thickness can be converted to a calcification thickness
map. Then, overlay the annotation on the calcification thickness map, the labels
either too short (stand-alone micro calcifications) or having insufficient mean
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Fig. 5. Demonstration of calcifications and the corresponding background tissues in
Volpara® density map. (a) Zoomed-in view of a Volpara® density map where cal-
cifications region is highlighted. (b) Mesh surface of the tissue density (thickness in
millimeters) in the highlighted region of (a). (c) Background tissues resulting from
morphological opening operation of (b).

Fig. 6. Demonstration of correcting BACs annotations. First, Volpara® density algo-
rithm converts (a) raw image (zoomed image section) to (b) density map where the
pixel value represents dense tissue thickness. Then, Eq. (5) converts (b) density map
to (d) calcification thickness map where the pixel value is the potential calcification
thickness. The automatic label correction algorithm examines (c) initial BACs annota-
tion. After removing the labels with insufficient length or mean calcification thickness
(based on (d) calcification thickness map), the algorithm yields (e) corrected BACs
annotation.

calcification thickness (dense tissues) are removed. An example of correcting
BACs annotation is shown in Fig. 6.

3.4 Length-Based Dice Score

Typical semantic segmentation evaluation metrics, such as recall, precision, ac-
curacy, F1-score/dice score, examine the overlapping area between prediction
and annotation. However, BACs are small in size, and slight differences in their
segmentation region may result in strong negative effects on the standard metric
like dice score, despite the segmentation still capturing sufficient clinical relevant
calcifications. Furthermore, the quantification of BACs is clinically measured by
their length rather than area size [1,32]. Therefore, we introduced a length-based
dice score to better focus on the linear trace of the BACs.
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Fig. 7. An example showing (b) prediction and annotation on (a) BACs patch (the
prediction and annotation were performed on the full image. We only show a patch here
for better visibility). A standard area based dice similarity score from (b) is 0.7081. In
(c), the temporary ground truth is derived from skeletonisation followed by dilation on
the annotation of (b). The length based dice score reads 0.9750, according to Eq. (6).

Following the work of Wang et al. [35], we first derived the skeletons for
both annotation and predicted BACs labels. Then we dilated the skeletonised
annotation labels to a width of 2.1 mm, the typical width of a breast artery [34].
The dilated labels were taken as temporary ground truth. A length-based dice
score is defined as Eq. (6)

DiceL = 2 ∗ Length of predicted BACs within temporary ground truth zone

Length of predicted BACs + Length of annotation BACs
.

(6)

The numerator is simply the length of the skeletonised prediction within the
region of the temporary ground truth, as seen in Fig. 7(c). In the denominator,
the length of the predicted and annotation BACs can be calculated from their
respective skeletons. DiceL ranges between 0 and 1 where 1 being a complete
match of the length between prediction and ground truth BACs.

From Figs. 7(a) and (b), clearly there are under-segmented annotation at
multiple locations along the BACs trace. Wang et al. also reported similar anno-
tation defects in Fig. 4 of [35]. Fig. 7(b) shows a strong visual agreement between
the prediction and annotation, and the prediction seems to have a better seg-
mentation quality than the annotation. But their subtle mismatch in area only
yields a moderate dice similarity of 0.7081. In comparison, our proposed DiceL

focuses on the correlation of the linear trace. As shown in Fig. 7(c), the skeleton
of the prediction delineates the BACs signals in high agreement, resulting in a
more clinical relevant DiceL score of 0.9750.
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4 Experiments

4.1 Data Split

The annotation results indicate positive BACs in 95% of the images. The images
were split with stratified sampling to 80%/10%/10% for train/validation/test,
so each split has a same positive rate of 95%.

4.2 Secondary Annotation on Test Data

The test data were carefully re-annotated by an in-house imaging scientist to re-
move the false positive segments from the initial annotation as much as possible.
After the re-annotation, 93 images are unchanged, 8 images have added BACs
segments, and 399 images have false positive segments removed. There are 155
images which have both added and removed segments. The re-annotated labels,
noted as ExpertGT (expert ground truth), were utilised to test the deep learn-
ing models trained on the original and algorithm corrected train and validation
labels.

4.3 Training Settings

The input mammograms are 16-bit, gray scale images. The image went through
a contrast normalisation via the methods in Sec. 3.1 followed by a standard pixel
value redistribution to achieve a mean of 0 and standard deviation of 1. We also
applied common augmentation such as blurring the image using a random-sized
kernel, random affine transforms and random brightness and contrast [6].

The models were trained using Adam optimiser with a initial learning rate
of 1e−4. During training, the loss on the validation dataset was monitored at
the end of each epoch. The learning rate was reduced by a factor of 10 once the
validation loss plateaued for 5 epochs. After a maximum of 100 epochs, or after
10 epochs of no improvement on validation loss, the training was terminated.
The model with the best validation loss was saved.

The deep learning segmentation model outputs a probability map. A final
binary mask is obtained by applying a cut-off threshold to the probability map.
In this study, such cut-off threshold was determined by a parameter sweep from
0.05 to 0.95 at a step of 0.05 on the validation dataset to achieve a highest dice
similarity score.

4.4 Results

Table 3 and Fig. 8 present the BACs segmentation results from various combi-
nations of models, image size, normalisation methods and annotation labels. For
ease of interpretation, we categorised the results into two groups as illustrated
in Table 3. The bottom group comprises five runs from rt0 to rt4 (r stands for
run, and t is short for third-party annotated labels), examining the impact of
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the image size (rt3 vs. rt4) and normalisation (rt0, rt1, rt2 and rt4) on the seg-
mentation performance. Clearly, the model trained on larger image size yields a
better dice score since higher image resolutions preserve more subtle texture in-
formation [31]. Meanwhile, simple gamma correction outperforms auto gamma
correction (i.e. self-adaptive contrast adjustment) and Volpara® density map
in both DiceTPA and DiceExpertGT scores (i.e. Dice scores from the respective
third-party annotated, TPA in short, and ExpertGT labels of the test data).
Comparing to the reference run rt0 (no image normalisation), image normalisa-
tion shows positive influence on improving the segmentation performance.

The top group (ra0 to ra3 where ‘a’ stands for algorithm corrected labels)
in Table 3 investigates the impact of annotations. As mentioned in Sec. 3.3,
we developed an automatic algorithm to correct false positives in TPA labels.
Here, the models were trained on the corrected labels then evaluated on the
original TPA and our re-annotated test labels (ExpertGT in the table). As the
ExpertGT labels were corrected from TPA labels, the two kinds of labels would
fall into distinct distributions. As a result, the models trained on TPA labels
did not perform well on the ExpertGT labels, and vice versa. In contrast, the
models trained on the algorithm corrected labels have significantly improved
DiceExpertGT scores (compare DiceExpertGT before and after rt4 in Fig. 8). For
example, ra1’s Dice (0.4485) is 29% higher than rt4’s Dice score (0.3477) on
the ExpertGT labels of the test data, suggesting the effectiveness of our label
correction algorithm.

The top group in Table 3 also probes different model structures. The runs
ra2 and ra3 correspond to Unet and DeepLabV3+ architectures respectively, and
they both use the same encoder structure of Resnet34, which has 5 times more
parameters than DeepLabV3+M (see Table 2 for details). Performance-wise,
DeepLabV3+R slightly falls behind UnetR, and they both surpass DeepLabV3+M

(ra1) in relatively large margins of 4.88% and 8.12% in DiceExpertGT separately.

Shifting our attention from Dice to DiceL in the last column of Table 3, the
length-based DiceL score provides a better intuition of how the predicted BACs
clinically correlate to the ExpertGT annotation. As DiceL mitigates the slight
difference in BACs segmentation region or width, its score reads higher than
the Dice metric. Generally, the DiceL and Dice results are aligned. They both
show the advantages of using larger image size, larger model and better quality
annotation labels. Among these benefits, quality annotation labels perhaps play
the most important role in improving segmentation performance. Fig. 8 shows
models rt0 to rt4 perform similarly as measured by either Dice or DiceL. Models
ra0 to ra3 trained on the corrected labels show consistently higher scores. The
major difference between ra0 and rt0 – rt4 is whether or not the corrected labels
were used during training.

Fig. 9 shows the examples of BACs segmentation results from the top three
performing models ra1, ra2 and ra3. The overall performance for BACs seg-
mentation is visually very close to the annotation, and the DiceL score better
matches with our perception than the Dice score. In the example at the third
row, we can see a surgical scar similar to BACs in appearance. The models ra1
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Table 3. Comparison of BACs segmentation performance in terms of the area based
Dice and length based DiceL scores on various training configurations. Note the Dice
score was computed against both third-party annotated (TPA) and the re-annotated
(ExpertGT) test labels, while the DiceL score was computed against the ExpertGT
only. The highest Dice and DiceL scores are highlighted.

Run
ID

Model
Name

Image Label Test Dice Test DiceL

Normalisation Size Train/Val TPA ExpertGT ExpertGT

ra3 DeepLabV3+R Simple gamma 1600 Algorithm 0.3061 0.4704 0.6261
ra2 UnetR Simple gamma 1600 Algorithm 0.3122 0.4849 0.6121
ra1 DeepLabV3+M Simple gamma 1600 Algorithm 0.3072 0.4485 0.5960
ra0 DeepLabV3+M Raw image 1600 Algorithm 0.3042 0.3993 0.5456

rt4 DeepLabV3+M Simple gamma 1600 TPA 0.3771 0.3477 0.5088
rt3 DeepLabV3+M Simple gamma 1024 TPA 0.3500 0.3287 0.4962
rt2 DeepLabV3+M Auto gamma 1600 TPA 0.3610 0.3447 0.5053
rt1 DeepLabV3+M Density map 1600 TPA 0.3680 0.3442 0.5084
rt0 DeepLabV3+M Raw image 1600 TPA 0.3590 0.3355 0.5066

rt0 rt1 rt2 rt3 rt4 ra0 ra1 ra2 ra3

Run ID

0.3

0.4

0.5

0.6

DiceL

DiceExpertGT

DiceTPA

Fig. 8. Visualisation of the Dice and DiceL scores in Table 3. The vertical line between
rt4 and ra0, as the horizontal mid-line in Table 3, divides the data into two groups.

and ra2 incorrectly label the scar as BACs while ra3 does not have such false
positive prediction. Notably, ra1 has a comparable performance with ra2 and
ra3 despite significantly fewer parameters.

4.5 Additional Results

Molloi et al. [25] and Wang et al. [34] reported a symmetrical presence of BACs
between the two views (CC vs MLO) and between the two breasts (left vs right).
Indeed as shown in Fig. 10, by using segmentation result as a binary prediction,
we find a strong correlation between the left and right breasts in a weighted
F1-score of: 0.6711 for the annotation, and 0.8811 for our method. Further, a
similar correlation is found between the CC and MLO views of: 0.8613 for the
annotation, and 0.9139 for our method.
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Fig. 9. Examples of BACs segmentation results for ra1, ra2 and ra3 models (see Table 3
for details) as compared to ExpertGT annotations. The raw images were zoomed and
contrast enhanced for better visibility.

5 Discussion

This paper presents a comprehensive analysis of training factors and their im-
pacts on the BACs segmentation performance. These training factors include
input image size, normalisation method, model architecture and annotation
quality. Firstly, we found that the segmentation accuracy benefits from using
larger image size for which more subtle features are preserved, relative to down-
sampled images. In the experiments of image normalisation, although the model
trained on normalised images outperforms the model trained on raw images,
their performance does not vary significantly where the simplest gamma cor-
rection shows a modest advantage over other more complicated methods. Fur-
ther, we compared the performance of three model structures: DeepLabV3+M,
DeepLabV3+R and UnetR. DeepLabV3+M has 5 times fewer parameters than
UnetR and DeepLabV3+R but their performances are very comparable, and
their segmentation results are visually close. Lastly, we revealed the importance
of high quality annotation. Among other training factors, annotation seems to
be the most critical factor determining segmentation performance. A good (here,
algorithm corrected) annotation alone shows the highest increase in the BACs
segmentation performance, relative to the other hyper-parameter settings tested.
However, for hand-crafted annotation it is practically difficult to achieve a pixel-
level perfection, nor consistency between readers, and delineation of fine BACs
structures in the presence of imaging artefacts is particularly challenging. Expert
annotation is expensive and consensus reads from many experts even more so.
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Fig. 10. Confusion matrices for BACs presence between left and right breasts, and
between CC and MLO views on test data. Out of 655 test images, there are 380 images
belonging to 95 patients with all 4 views (LCC, LMLO, RCC and RMLO) available.
The binary prediction is achieved by examining if a segmentation mask is empty. The
presented results are from ra3.

Pixel-perfect consistency is difficult even for experts. Crowd-sourced non-expert
annotation is inexpensive, but imperfect. To bridge this annotation quality gap,
we developed a label correction algorithm that automatically removes false posi-
tive labels from BACs annotations. The algorithm demonstrated its effectiveness
by allowing a significantly improved segmentation performance.

In addition to the investigation of training factors, we also developed what
may be a more clinically relevant metric to improve the evaluation of BACs
segmentation. Subtle differences in artery segmentation may have a significant
detrimental effect on standard evaluation metrics like Dice score, but may still
be able to capture clinically important calcifications with acceptable results. To
quantify such clinical relevance, we rectified Dice calculation from its focus on
area similarity to trace similarity. The new metric, namely DiceL, has shown to
provide a more intuitive measure for the structural correlation between BACs
prediction and annotation.

A limitation of this work is the lack of ground truth that is independent of hu-
man annotation, e.g. this could come from either physical or digital (simulated)
phantom images [26]. We are interested to carry out a validation study where
BACs segmentation can be compared to known calcification size and location.

Another important limitation is the lack of negative control images to more
thoroughly train and test the model and to comprehensively validate the false
positive rate. E.g., Fig. 10 is of limited value without more cases that have no
BACs.

In summary, deep learning models have demonstrated promising performance
on BACs segmentation. An optimal result can be achieved with higher input im-
age resolution, appropriate image contrast adjustment and larger deep learning
model. The annotation quality is found to be a key factor determining the seg-
mentation performance. In general, a model trained with noisy labels is inferior
to that trained with good annotation. We recommend other researchers conduct
a comprehensive quality control over the annotation process. A thorough review
would be required if the annotations were made by non-expert readers.
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31. Thambawita, V., Strümke, I., Hicks, S.A., Halvorsen, P., Parasa, S.,
Riegler, M.A.: Impact of Image Resolution on Deep Learning Performance
in Endoscopy Image Classification: An Experimental Study Using a Large
Dataset of Endoscopic Images. Diagnostics 11(12), 2183 (Nov 2021).
https://doi.org/10.3390/diagnostics11122183

32. Van Berkel, B., Van Ongeval, C., Van Craenenbroeck, A.H., Pottel, H., De Vusser,
K., Evenepoel, P.: Prevalence, progression and implications of breast artery cal-
cification in patients with chronic kidney disease. Clinical Kidney Journal 15(2),
295–302 (Feb 2022). https://doi.org/10.1093/ckj/sfab178

33. Wang, J., Azziz, A., Fan, B., Malkov, S., Klifa, C., Newitt, D., Yitta, S., Hyl-
ton, N., Kerlikowske, K., Shepherd, J.A.: Agreement of Mammographic Measures
of Volumetric Breast Density to MRI. PLoS ONE 8(12), e81653 (Dec 2013).
https://doi.org/10.1371/journal.pone.0081653

34. Wang, J., Ding, H., Bidgoli, F.A., Zhou, B., Iribarren, C., Molloi, S., Baldi,
P.: Detecting Cardiovascular Disease from Mammograms With Deep Learn-
ing. IEEE Transactions on Medical Imaging 36(5), 1172–1181 (May 2017).
https://doi.org/10.1109/TMI.2017.2655486

35. Wang, K., Khan, N., Highnam, R.: Automated Segmentation of Breast Arterial
Calcifications from Digital Mammography. In: 2019 International Conference on
Image and Vision Computing New Zealand (IVCNZ). pp. 1–6. IEEE, Dunedin,
New Zealand (Dec 2019). https://doi.org/10.1109/IVCNZ48456.2019.8960956

36. Wang, X., Liang, G., Zhang, Y., Blanton, H., Bessinger, Z., Jacobs, N.: In-
consistent Performance of Deep Learning Models on Mammogram Classifica-
tion. Journal of the American College of Radiology 17(6), 796–803 (Jun 2020).
https://doi.org/10.1016/j.jacr.2020.01.006

37. Yu, S., Chen, M., Zhang, E., Wu, J., Yu, H., Yang, Z., Ma, L., Gu, X., Lu,
W.: Robustness study of noisy annotation in deep learning based medical im-
age segmentation. Physics in Medicine & Biology 65(17), 175007 (Aug 2020).
https://doi.org/10.1088/1361-6560/ab99e5

146


