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Abstract. The diagnosis of Biliary Atresia (BA) is still complicated and
high resource consumed. Though sonographic gallbladder images can be
used as an initial detection tool, lack of experienced experts limits BA
infants to be treated timely, resulting in liver transplantation or even
death. We developed a diagnosis tool by ViT-CNN ensemble model to
help doctors in underdeveloped area to diagnose BA. It performs better
than human expert (with 88.1% accuracy versus 87.4%, 0.921 AUC ver-
sus 0.837), and still has an acceptable performance on severely noised
images photographed by smartphone, providing doctors in clinical facili-
ties with outdated Ultrasound instruments a simple and feasible solution
to diagnose BA with our online tool.

Keywords: biliary atresia · visual transformer · medical image pro-
cessing · ensemble model.

1 Introduction

Biliary atresia (BA) is a pediatric disease affects both intrahepatic and extra-
hepatic bile ducts, which leads to pathological jaundice and liver failure in early
infancy [1, 2]. Though BA only has a prevalence rate of about 1 in 5000–19,000
infants all over the world [3, 4], it is the most common cause for liver trans-
plantation in infants below 1 year old [5]. If not treated timely, the disease
will progress to end-stage liver cirrhosis rapidly, and liver transplantation will
be necessary. Receiving Kasai portoenterostomy (KPE) surgery before age 2
months can largely extend the infant’s native liver survival time [6]. Therefore
diagnosis in an early stage is essential. However, it is still hard to distinguish
BA from common causes of cholestasis [7], and diagnostic methods of BA includ-
ing assay of serum matrix metalloproteinase-7 and screening the direct bilirubin
concentration [7, 8], are not feasible for medical facilities with underdeveloped
conditions especially in rural regions.

In the rural area of developing Asian country like China and India, ultrasound
examination is the main approach to diagnose BA in jaundiced infants. Though
the method has a specificity over 90% [9], the lack of experienced doctor who are
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capable to make diagnosis and perform operation in undeveloped region, delays
the appropriate treatment and the patient may miss the optimum therapeutic
time. Thus, an AI-assisted diagnosis mechanism is vital to enable clinical staffs
in undeveloped region to make preliminary diagnosis timely before the condition
worsen.

Deep learning methods, specifically, the convolutional neural networks (CNNs),
have been widely used in Biomedical Image Analysis tasks, and have been proved
to be superior or comparable to human experts in tasks like diagnosis of lung
cancer or Covid-19 [10, 11]. In 2021, teams from Sun Yat-Sen University (SYSU)
and The First Affiliated Hospital of SYSU developed a deep learning Model
based on Deep Residual Networks, to help diagnose BA, as well as a smart-
phone application which can help doctors especially in rural area, to diagnose
rare disease like BA [12].

Though the model outperforms human experts, both in accuracy and sensi-
tivity, the worst case is still unconsidered. In the case when sonographic system
is not connected to Internet and exporting images is impermissible, taking a
photo by smartphone may be the simplest solution. Moiré patterns and other
noise can catastrophically reduce the accuracy of the classification model, and
CNN is proved to be effective in such denoising tasks as Moiré photo restora-
tion [13, 14]. Visual Transformer (ViT) is another state of the art (SOTA) deep
learning model for image processing, which holds better performance in multi-
task than CNN [15], and is also utilized in Biomedical Image Processing (BIP)
tasks, like MRI Segmentation [16] and Covid-19 diagnosis [17]. We combined
the two techniques and utilize both the high accuracy of ViT models and the
denoising ability of CNNs.

In summary, it is of great necessity to develop a diagnosis system of BA to
assist unexperienced clinical staff in rural area to make preliminary diagnosis,
and the system should have the ability to eliminate noises like Moiré patterns.
In this study, we developed an ensemble deep learning model (EDLM) which
contains four ViT models and two CNN models. It outperforms human experts
in normal cases and have a better performance in noised dataset than ensemble
CNN models or ViT models. Our main contributions can be concluded as follow:

1. We proposed an EDLM of both ViT and CNN to diagnose BA for infants
aged below 60 days. The model is an image classification model which classifies
sonographic gallbladder images, and it contains 4 ViT models (ViT-base, Swin
Transformer-base, CvT-24 and CSwin Transformer-base) and 2 CNN models
(ResNet-152 and SENet). Our model has a better accuracy and AUC score than
human expert (with 88.1% accuracy versus 87.4%, 0.921 AUC versus 0.837).

2. Due to the imbalanced data (as a rare disease, BA-positive sample is
lesser), we compared several strategies to enhance the specificity and sensitivity
of the model.

3. We discussed several designs of the EDLM, compared the ViT-CNN ensem-
ble model with ensemble CNN model, ensemble ViT model and single models,
and two kinds of voting strategy. And we proved our mechanism performs better.
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4. In the noised case, our ensemble model evidently outperforms others. And
we adopted several few-shot tuning methods to enhance the model’s ability to
classify noised sonographic images photographed by cellphone.

2 Related works

2.1 Conventional BA diagnosis methods

BA is such a rare and complicated disease, as well as the infantile patients can’t
afford surgical exploration, an accurate diagnosis of BA is still a challenge. There
are several clinical symptoms of BA including persistent jaundice, pale stools,
and dark urine [3], for the conjugated hyperbilirubinemia due to cholestasis.
However, neonatal cholestasis can be caused by many other diseases. Though
screen the direct bilirubin concentration [9, 18] or stool color [4] can yield sensi-
tivities over 97%, and serum gamma-glutamyl transferase (GGT) can be consid-
ered to distinguish BA from PFIC, bile acid synthesis or metabolism disorders,
but mechanical bile duct obstruction, paucity of interlobular bile ducts or cystic
fibrosis are still possible [19]. The specificity of method beyond is not satisfying
(that means other disease still can’t be excluded).

Those BA-suspected infants need further examinations including ultrasonog-
raphy (US), hepatobiliary scintigraphy and magnetic resonance cholangiography
(MRCP). Hepatobiliary scintigraphy has a low specificity as 70.4% and is time-
consuming and radiant [20]. MRCP is also limited by the small body size of
infants and is also deprecated for the need of sedation [21]. Therefore, US has
been recommended as the preferred imaging tool for the initial detection of
BA [3]. Several direct features reflecting the abnormalities of biliary system can
be the criterion of BA, including Gallbladder abnormalities [20, 22], Triangular
Cord sign [23, 24], and porta hepatic cyst [25, 26], but any single feature can’t
guarantee extremely high specificity and sensitivity at the same time. Even some
infants may still have equivocal US results, that US-guided percutaneous chole-
cystocholangiography (PCC) may be needed [27]. In conclusion, the diagnosis of
BA is a process full of complexity and uncertainty, that’s why human experts
mentioned in Zhou, W et al.[12] have an AUC lower than 0.85.

2.2 CNN models

The convolutional neural networks (CNN) has been the mainstream of Computer
Vision (CV) domain since the invention of AlexNet [29], though come up decades
ago [30]. In the last decade, deeper and more effective CNN models have been
proposed and achieved enormous success, like VGG [31], GoogleNet [32], ResNet
[33], DenseNet [34], PNASNet [35], and EfficientNet [36], etc.

ResNet and its variants are still the solid backbone architectures of CV, which
introduces the Residual mechanism. Se-ResNet or SENet is an evolved model
with a new mechanism called Squeeze-and-Excitation (SE) [37], allows the net-
work to perform feature recalibration. That means it can use global information

70



4 Z. Wei

Fig. 1. A sketch map of the conventional BA diagnosis process. To learn a
more detailed diagnostic decision flow chart can refer to[28]

to reemphasize valuable local features while restrains the less important ones. It
can be likened to attention mechanism, which has a global receptive field on its
input. Therefore, it performs better on classification tasks, and it is adopted by
the BA-diagnosis application of Zhou, W et al.[12] as the main network.

2.3 Visual Transformer models

Visual Transformer (ViT) is firstly proposed by Google in 2021 [15], is the SOTA
technique in image classification tasks. Since 2017, Transformer has been widely
used in natural language processing (NLP) tasks [38], and pretrained models
based on Transformer architecture like BERT [39], GPT [40] and UniLM [41]
are still the SOTA techniques. Transformer consists of several Encoder blocks
and decoder blocks, based on self-attention mechanism, which provide the ca-
pability to capture non-local features or encode dependencies between distant
pixels [42]. It can be concluded as that CNN performs better on the extraction
of local features and Transformer concentrates on non-local features. ViT im-
ported the Transformer method into CV and proposed an approach to embedded
patches of image into sequential input which is similar to inputs of NLP models.
It outperforms all SOTA CNN models on all popular image classification bench-
marks [15], but it doesn’t have an equivalent performance on other downstream
tasks like object detection and instance segmentation, due to its lack of inductive
bias compared to CNNs.
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DeiT is a follow-up model of ViT, which didn’t change the network archi-
tecture but imported Knowledge Distillation method to transfer inductive bias
from CNN teacher model to the student model [43].

Swin Transformer is one of the best performed CV backbone in multi-
task [44]. It proposed an improved sliding window method (shifted window) to
eliminate ViT’s shortage caused by fixed scale. Swin Transformer utilized both
the hierarchical design and the shifted window approach to transcend the former
state of art models in several tasks, as well as reduce the computational complex-
ity. Comparing to ViT, it holds less parameters and have a better speed-accuracy
trade-off.

CvT is a combination of ViT and CNN, like Swin Transformer, it contains
a hierarchy of Transformers to capture features of different receptive fields but
utilizes convolutional layers to produce token embedding [45]. These changes
introduce desirable properties of CNN, such as inductive bias.

CSwin Transformer is another evolved model of ViT proposed by Mi-
crosoft, the same as Swin Transformer [46]. Instead of the Shifted Window At-
tention (SWA) mechanism of Swin Transformer, it introduced a Cross-Shaped
Window (CSwin) mechanism. SWA allows information exchange through nearby
windows, but the receptive field is still enlarged quite slowly, therefore Swin
Transformer needs a dozen of Transformer blocks in the pyramid structure.
CSwin has a lower computational cost while can achieve the global receptive
filed in less steps. CSwin Transformer is still the CV backbone models with
highest performance.

3 Methods and Data Materials

3.1 EDLM of CNNs

Due to the Condorcet’s Jury Theorem [47], ensemble classification model made
up of individual models which have probabilities of being correct greater than
1/2, has a probability of being correct higher than the individual probabili-
ties [48]. Hybrid or ensemble machine learning models have been popular since
decades and can trace their history back to random forest [49] and bootstrap
aggregating [50].

Our first attempt is to train k different models on k-fold split trainsets. That
means we randomly separate the internal dataset into k (e.g., five) complemen-
tary subsets, then in the k cases, different single subset is selected as the internal
validation set, and other k − 1 subsets will be combined as the training set. On
each training set, a CNN model is trained, and for different models, their per-
formances are evaluated on different validation sets (the remained one subset).
It is similar to k-fold cross validation, but every model is kept (in k-fold cross
validation, only the best model will be selected, with others abandoned). The
ensemble model predicts the label of test data by calculating the average of out-
puts (predicted score of each category) of k models, and then do SoftMax to
identify the final prediction label.
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Fig. 2. The framework of an ensemble model. The form upside shows that the
training set was divided into complementary subsets (means they are disjoint and the
union of them are the universal set), only one of the subsets is selected as validation
set in the training of each model. Differ to the classic case of Condorcet’s Jury, neither
simple majority rule nor unanimity rule is adopted, but we calculate the average of
SoftMax outputs of the models (a real value instead of 0-1 value).

To construct the ensemble model, several CNN architectures were considered.
Including ResNet [33], DenseNet [34], SeNet [37] and EfficientNet [36]. Zhou, W
et al.[12] utilized SeNet-154 as the base classification of the EDLM, but we
found it not a best choice, due to that the sonographic images are greyscale
images de facto, and the motivation of SeNet is to enhance ResNet from the
aspect of channel relationship. So, the SE mechanism may not function, and we
can see, as a result, SeNet-154 didn’t perform better than ResNet-152 (83.57%
versus 85.60% on accuracy). Consequently, we adopted EfficientNetB6 as the
base CNN model
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3.2 ViT-CNN EDLM

Though ensemble model based on single model can promote the performance
indeed, those models with same architecture have extremely high correlation,
which conflicts with the assumption of independence of the Condorcet’s Jury
Theorem [47]. That means positive correlation between base models will decrease
the accuracy of the ensemble model, and diversity of models will conversely
improve the accuracy [51]. Therefore, choosing models with entirely different
architectures may perform better than single architecture ensemble model.

As is concluded in Sec. 2.3, Visual Transformer has been becoming the new
backbone architecture of computer vision, and it has a very different mecha-
nism from CNNs. Convolutional mechanism endows CNNs the characteristics of
translation invariance and inductive bias, while Transformer gives ViT models
stronger ability of extracting global features in a patch, and they gain inductive
bias by other approaches. So that if we combine CNNs with ViT models, they
may concentrate on very different patterns and operates in different ways, and
the diversity of the ensemble model will be guaranteed.

Other than EDLM in Sec. 3.1, since base models vary in architecture, it has
no necessity to ensure models with different architectures trained on different
dataset to produce diversity. Thus, models of same architecture will share a group
of k-fold generated sets, while training sets of models with different architectures
have no relevancy. The prediction rule is still the average strategy like in Sec. 3.1.

Several Visual Transformer methods were considered in our attempts, includ-
ing ViT (the origin google version instead of the abbreviation of Vision Trans-
former), DeiT, Swin Transformer, CvT, and CSwin Transformer. As is shown
below, single CSwin Transformer performed best in all these models.

3.3 Datasets

It should be mentioned that, besides the lack of experienced doctors, the sono-
graphic machines are usually not connected to the internet, and export images
is not feasible. Therefore, taking a photo by cellphone and upload to remote
diagnosis system might be a temporary expedient.

Thus, we adopted two datasets, besides the sonographic gallbladder images
provided on https://zenodo.org/record/4445734, we generated more noised pic-
tures, which are photographed by several doctors with different models of smart-
phones. Differ from experiments in Zhou, W et al.[12], we want to explore the
generalization ability of the model more, if we only take one type into account,
there might be some bias unconsidered.

The first dataset consists of a 3705 images internal training dataset (inter-
nal validation set is also split from it), and an 842 images external validation
dataset, all the images are segmented. The second dataset has 24150 pictures
for the internal dataset, and 840 for the external validation one. 3659 pics of the
internal set are original sonographic gallbladder images, and the others are re-
produced picture took by smartphone, based on foresaid original images. Images
in the internal set were took by five doctors, and there were two new coming
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Fig. 3. The framework of a ViT-CNN EDLM (i.e., two architectures, namely
CSwin Transformer and EfficientNet). The difference is that, for each architec-
ture, several models are trained on k-fold cross validation rule independently. For
models of an architecture, they monopolize a whole training set, because there are
enough diversity from different architectures, and models with same architecture are
required to gain patterns.

doctors producing the external data. that is because we expect the model to gain
adequate generalization ability, and the immunity against random noise.

3.4 Data processing

What should be considered at first is, that the positive samples are much less
than the negative ones, due to BA is such a rare disease, as is mentioned, has a
low incidence about 1 in 5000–19,000 infants [3]. There are only about 23% of the
samples are BA positive in both datasets, so some measures should be applied to
solve the imbalance problem. We tried several approaches, like resampling, down
sampling, modifying class weights in the loss function, or k fold cross validation.
As a result, we notice that resampling is the most practical strategy. Because
we have adopted an EDLM method, k fold cross validation is redundant; down
sampling made a precision loss, deservedly; changing class weights might be an
efficient strategy, but we found it performs worse than simply resampling. It
may blame the ensemble model, for in the trainset of a single model, some key
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Fig. 4. a: an example of the second dataset, the left one is an original sonographic
gallbladder image of a non-BA infant, and the right one is the reproduced picture of
the left. b: BA patient, the same as a, original image on the left and reproduced on
the left. c: a sample of the first dataset, differ from the second one, pictures are pre-
segmented. d: smartphone reproduced picture in Zhou, W et al.[12]. e: smartphone
reproduced picture of the second dataset. It’s obvious that noise in d isn’t severe, and
the performance on e can better illustrate the generalization ability of the model.

samples of a pattern may miss, while in the resampling case, it is ensured that
the trainset are more likely to contain all key samples.

Secondly, if we aim at improving the generalization ability of the model, even
the 24k training dataset won’t be sufficient, adopting some data augmentation
techniques is necessary. Random rotation, random horizontal flip are adopted,
resize and random crop is also applied to the original set, and all the images are
turned into greyscale, for color has no significance in sonographic images.

And whether training data need masks, is also worth discussing. At first, the
hospital provided manually annotated images, with a mask showed the focus,
but finally we found the mask an obstacle to improve the model performance.
From our perspective, the mask quality is unsatisfactory, but doctors who made
the annotation are not to blame. As is mentioned in Sec. 2.3, multiple features
are considered in the US diagnosis of BA, when the doctor label the images, he
may only focus on one of those features, and omit some. Thus, ignoring the mask
information and just train models on the original data could perform better.

4 Experiments and Results

4.1 Experimental settings

There are two tasks in the experiment, one is the diagnosing BA on original
sonographic gallbladder images, the other one is on noised pictures photographed
by smartphone. We solved the two problems step by step.

Firstly, we trained the classification model for original images. Models with
different architectures were trained on different 5-fold split dataset, that means
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Fig. 5. Samples after data augmentation.

for one architecture, five models were trained at once, the training set was divided
into five subsets as discussed in Sec. 3.1, and for each model, different subsets
were used as validation set, remained four sets were used as the training cohort.

For every architecture, models are trained by transfer learning, the network
loaded pretrained weight on ImageNet-1k classification dataset as the initial
weight. And we fine-tuned the model on our training cohort. The loss function
was Cross Entropy loss, and we tried weighted Cross Entropy as mentioned in
Sec. 3.4, but we found it not better than resampling. The model was trained for
200 epochs and evaluated on internal validation set for every 5 epochs. If the
evaluation loss didn’t decrease for next 40 epochs, then the training progress
would be forced to an early termination, and the parameter model with the
lowest loss (i.e., 40 epochs before) will be saved.

At the step of comparing different architectures, like k-fold cross validation,
we chose the model with best performance on the test sets in every k-fold training
as the representative. But after we chose the base architectures of the ensemble
model, the five models will be adopted together to construct the ensemble model.

To control the number of models in different ensemble models consistent, all
the ensemble models in the comparison consists of six base models. The ViT-
CNN ensemble model has three SWin Transformer Base and three EfficientNet
B6, trained on 3-fold cross training cohort.

For the second problem, we also utilized transfer learning, but it was the
weight of ensemble model trained previously to be loaded. For each base model,
we fine-tuned the model on the noised data, with augmentation mentioned in
Sec. 3.4, for 30 epochs, evaluated every 5 epochs, and the best model in evaluation
would be selected.
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4.2 Results

As is shown below, for the single models, ViT family outperforms CNNs, and
CSwin Transformer is the best single model. All the ensemble models have a
better performance than human expert, but the ViT-CNN ensemble model do
the best. CSwin Transformer has an 87.86% accuracy on the original images
(while precision is 88.07% and recall is 87.74%, areas under the receiver operating
characteristic curve of 90.78%), and 80.5% accuracy on the smartphone-took
images (while precision is 80.49% and recall is 81.32%, areas under the receiver
operating characteristic curve of 80.83%).

For ensemble models, ViT-CNN ensemble model has 88.11% accuracy on the
original images (while precision is 88.35% and recall is 87.98%, areas under the
receiver operating characteristic curve of 92.90%), and 81.11% accuracy on the
smartphone-took images (while precision is 82.33% and recall is 81.71%, areas
under the receiver operating characteristic curve of 81.04%).

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

EfficientNet B6 SwinT CSwinT ViT DeiT ResNet152 CvT

accuracy precision recall

Fig. 6. Comparison between single models. Fig. 7. The areas under the re-
ceiver operating characteristic
curve (AUC) of ViT-CNN en-
semble model.

Other than human experts, the deep learning models have precision and
recall very similar, while the human experts have a recall obviously lower than
the precision. The phenomenon indicates that our rebalance strategy works,
that the deep learning models didn’t performs worse on positive samples than
negative ones. But human experts are still limited by the rarity of the disease,
they can’t recognize the atypical samples so that they have a lower sensitivity
than machine.

5 Discussion

5.1 Comparison between methods

As has been discussed in Sec. 2.3, ViT models have been proved to be better
backbone architectures than CNN models like ResNet or EfficientNet. In the
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Human expert ViT-CNN ensemble CNN ensemble CSwinT ensemble

accuracy 87.40% 88.11% 87.89% 87.93%

precision 91.00% 88.35% 87.92% 88.04%

recall 76.40% 87.98% 88.10% 87.86%

auc 83.70% 92.90% 92.11% 91.75%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

Fig. 8. Comparison between different ensemble models and human expert.

test of different architectures, generally, ViT models did better, and the order of
performance is: CSwin Transformer, Swin Transformer, DeiT, ViT, CNNs. CvT
is an exception that we didn’t find a version of CvT has comparable amount of
parameters to ViT-base (about 80M). So it is predictable that it has a worse
performance than ResNet152 and other models

ResNet50 CvT224 ResNet152 ViT

accuracy 0.8336 0.8413 0.8566 0.857

precision 0.8323 0.8423 0.8574 0.861

recall 0.8357 0.8405 0.856 0.8548

auc 87.85% 87.73% 90.17% 91.77%

Parameters 25.61 31.6 60.36 86.42
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Fig. 9. Comparison considered difference in amount of parameters between
models

However, it does not absolutely mean that ensemble ViT model will out-
perform ensemble CNN model. Though single CNN models have a worse per-
formance than ViT models, as is shown in Fig. 8, ensemble CNN model has a
comparable or better performance than ensemble ViT model. It can be inter-
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preted as that in classification tasks, CNNs are more sensitive to training data.
In each fold of training cohort, the performance of CNNs are limited by the lack
of some images, but in the ensemble case, the diversity produced by different
data, will improve the performance of ensemble model.

The ViT-CNN ensemble model has the best performance as we expected,
with the same number of base models as other ensemble models. The diversity
of model architectures may account for the better performance, it matches the
assumption of independence of the Condorcet’s Jury Theorem.

5.2 Ensemble strategy: simple majority or average

Though ensemble model has become a popular technique in improving the upper
bound of model performance, few investigators take the difference between classic
Condorcet’s Jury and EDLM into account.

Assume an ensemble model is made up of several individual models whose
prediction score of an input are independent and identically distributed (i.e.,
suppose it is a random variable and we know the priori probability distribu-
tion), e.g., a Gaussian distribution N(µ, σ2), the difference of two kinds of voting
strategy will be obvious. In the simple majority case, the probability of a single
model misclassifies a positive sample (i.e., µ > 0.5, and prediction score is less
than 0.5) is

Pr (prediction score < 0.5) =

∫ 0.5

0

1√
2πσ

e−
(x−µ)2

2σ2 , µ > 0.5. (1)

For convenience, we record p1 = Pr (prediction score < 0.5), and the pre-
diction score of a single model is Si. Suppose the ensemble model has k base
models, the voting game turns into a Bernoulli experiment b(k, p1). The proba-
bility of majority voting predicts incorrectly is the probability of the number of
cases Si < 0.5 is less than k/2 for 0 < i ≤ k (k is odd), like this:

Pr (simple majority voting is wrong) =

pk1 + C1
kp

k−1
1 (1− p1) + . . . C

k−1
2

k p
k+1
2

1 (1− p1)
k−1
2

(2)

And the average strategy is much simpler. The average output of the ensemble
model can be represented as X̄ = (X1 +X2 + . . . +Xk)/k,Xi ∼ N(µ, σ2), and
all Xi are independent and identically distributed. Thus, X̄ ∼ N(µ, σ2

k ), that
means more base models there are, more accurate the prediction is.

Let us quantitatively compare these two strategies. Assume the output of
a base model correspond to N (0.6, 0.1) and there are k = 5 base models, and
p1 = 15.87% can be easily calculated (having a 1σ deviation). Then

Pr (simple majority voting is wrong) = 0.0311, and the probability of the
average case is wrong is the probability of having a

√
5σ deviation,

Pr (average score is wrong) =

∫ 0.5

0

4
√
k√

2πσ
e−

k(x−µ)2

2σ2 = 0.0127 (3)
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Fig. 10. PDF of Xi and X̄.

It is obvious that the average strategy is less possible to mistake than the simple
majority strategy.
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