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Abstract. Object detection is an important sub-problem for many com-
puter vision applications. There has been substantial research in im-
proving and evaluating object detection models for generic objects but
it is still not known how latest deep learning models perform on small
road scene objects such as traffic lights and traffic signs. In fact, lo-
cating small object of interest such as traffic light and traffic sign is a
priority task for an autonomous vehicle to maneuver in complex sce-
narios. Although some researchers have tried to investigate the perfor-
mance of deep learning based object detection models on various public
datasets, however there exists no comprehensive benchmark. We present
a more detailed evaluation by providing in-depth analysis of state-of-the-
art deep learning based anchor and anchor-less object detection models
such as Faster-RCNN, Single Shot Detector (SSD), Yolov3, RetinaNet,
CenterNet and Cascade-RCNN. We compare the performance of these
models on popular and publicly available traffic light datasets and traf-
fic sign datasets from varied geographies. For traffic light datasets, we
consider LISA Traffic Light (TL), Bosch, WPI and recently introduced
S2TLD dataset for traffic light detection. For traffic sign benchmarking,
we use LISA Traffic Sign (TS), GTSD, TT100K and recently published
Mapillary Traffic Sign Dataset (MTSD). We compare the quantitative
and qualitative performance of all the models on the aforementioned
datasets and find that CenterNet outperforms all other baselines on al-
most all the datasets. We also compare inference time on specific CPU
and GPU versions, flops and parameters for comparison. Understand-
ing such behavior of the models on these datasets can help in solving
a variety of practical difficulties and assists in the development of real-
world applications. The source code and the models are available at
https://github.com/OppoResearchIndia/DLSOD-ACCVW.
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2 Ashutosh Mishra et al.

1 Introduction

Detecting traffic light/traffic sign is one of the most difficult problem for the
perception module of an autonomous agent due to factors such as size, imag-
ing resolution, weather etc. Fundamentally, designing systems that can help in
achieving automatic TLD/TLR/TSD/TSR (traffic light detection/ traffic light
recognition/ traffic sign detection/ traffic sign recognition) would be extremely
helpful in substantially reducing the number of fatalities around the world. How-
ever, there are multiple hindrances in performing TLD/TLR or TSD/TSR. Some
of these hindrances could be size of traffic lights/traffic sign, view distances,
weather conditions and objects of confusion such as street lights, house bulbs
or other light sources. Pre-deep learning era for TLD/TLR or TSD/TSR uses a
combination of techniques such as color thresholding, template matching, pixel
clustering etc [13,39,14,19,34]. But they have proven to be robust enough under
certain specific conditions to give successful results.

Advancement in deep learning has led to many improvements in the generic
object detection performance. The main objective of this paper is to evaluate the
performance of recent deep learning based object detection models in detecting
small scale objects related to scene understanding task for autonomous driving
viz. traffic lights and traffic signs. This evaluation is of utmost importance in
order to check the performance metrics that can lead to decrease in false detec-
tion rate in real time scenario. For this, we compare all the publicly available
datasets on a common benchmark. We club the fine classes to their respective
meta class and then compare the metrics of different object detection models.
The process of conversion from fine class to meta class is explained in Section
III. Therefore, the main contributions of our work are:

– Evaluation and analysis of various state-of-the-art deep learning object de-
tection models on traffic light datasets and traffic sign datasets - LISA
TL [20], WPI [5], BOSCH [2], S2TLD [37], LISA TS [26], TT100K [41],
GTSD [18] and MTSD [9] (See Figure 1).

– We evaluate the performances of these datasets on common meta classes
with six object detectors: Faster R-CNN [30], SSD [23], RetinaNet [22],
Yolov3 [29], CenterNet [7] and Cascade-RCNN [4].

To our knowledge, this is the first comprehensive work to compare publicly
available traffic sign and traffic light datasets from various geographies on the
common meta classes. We choose these models for evaluation because of two
reasons. First, they are widely accepted and publicly available across all the
deep learning frameworks among industry and academia. Second, the inference
time of these models make them deployable ready for real time applications. This
evaluation necessitates the need for understanding how state-of-the-art object
detection algorithms perform on small road scene objects such as traffic sign
and traffic light which is critical for developing practical applications such as
self driving vehicles.
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Evaluating and Bench-marking Object Detection Models 3

Fig. 1. Sample images with ground truth from all traffic light and traffic sign datasets
used for bench-marking. The first row (from L to R) contains images from all traffic light
datasets: LISA-TL, BOSCH, WPI, S2TLD. The second row (from L to R) contains
images from all traffic sign datasets: LISA-TS, GTSD, TT100K and MTSD (Best
viewed when zoomed).

2 Related Work

We are interested in bench-marking the performance of various object detection
models on publicly available traffic sign and traffic light datasets. The perfor-
mance obtained can be represented as the state-of-the-art on meta classes of
these datasets.

Dataset TS/TL Geography Average Resolution Training Images Test Images Original Classes Meta Classes

LISA TL [20] TL US 1280×960 20535 22481 7 3
WPI [5] TL US 1024×2048 1314 2142 21 2

BOSCH [2] TL US 1280×720 5093 8334 15 4
S2TLD [37] TL China 1920×1080 744 244 5 5
LISA TS [26] TS US 880×504 5027 1571 47 15
TT100K [41] TS China 2048×2048 6107 3073 128 3
GTSD [18] TS Germany 1360×800 600 300 43 4
MTSD [9] TS Diverse 3407×2375 36589 10544 313 4

Table 1. Statistics of different traffic light and traffic sign publicly available datasets.
Original Classes: The classes originally present in the dataset folder. Meta Classes:
The original classes converted to base class. For LISA TS [26] and S2TLD [37] datasets,
the split of training and testing has been created by the authors. The original dataset
has more images but we only consider the ones with proper annotations. The test
annotations for MTSD [9] and GTSD [18] are not publicly available so we consider val
set as test set for reporting results.

2.1 Traffic Sign Detection

The objective of performing traffic sign detection(TSD) is to get the exact lo-
cations and sizes of traffic signs. The well-defined colors and shapes are two
main cues for traffic sign detection. There have been various works on detecting
traffic signs using traditional methods employing histogram of oriented gradients
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4 Ashutosh Mishra et al.

(HOG) [39,14,19], SIFT (scale invariant feature transform) [15], local binary pat-
terns (LBP) [8]. The main working concepts in TSD using traditional methods
revolves around using a sliding window based or a region of interest (ROI) based
approach. HOG and Viola-Jones-like detector [25] are examples of sliding based
methods. Wang et al. [35] uses a hierarchical sliding window method to detect
traffic signs.

With the advent of deep learning and the rise in the use of convolutional
neural networks, there have been many works, such as Zhu et al. [40] devel-
oped a strategy to detect and recognize traffic signs based on proposals by the
guidance of fully convolutional network. R-CNN using a proposal strategy gave
good results on a small scale dataset [21]. R-CNN along with an object pro-
posal method [42] was used to further improve the performance on the same
dataset. In 2016, [1] proposed a method that implements the multi-scale sliding
window technique within a CNN using dilated convolutions. In 2019, the mul-
tiscale region-based convolutional neural network (MR-CNN) [24] was proposed
for small traffic sign recognition, where a multiscale deconvolution operation was
used to upsample the features of deeper convolution layers that were concate-
nated with those of the shallow layer directly to construct fused feature map.
Thus, the fused feature map could generate fewer region proposals and achieve
a higher recall rate. multiresolution feature fusion network exploiting deconvolu-
tion layers with skip connecting and a vertical spatial sequence attention module
was designed 501 for traffic signs detection.

2.2 Traffic Light Detection

Conventional methods of traffic light detection include selecting confident pro-
posals from a probable candidate set of traffic light’s generated using color and
shape information.

In conventional traffic light detection(TLD), a candidate set of TL is, typi-
cally, generated using the colour and shape information [34,13]. Once the can-
didate TL’s are identified, [13] and [6] employ Adaboost algorithm and other
morphological operations to segment out the TL regions. But the disadvantage
of using such algorithms using hand-crafted features is the lack of generalization
ability of methods. Subsequently, methods such as HOG or SIFT tend to lose
information which might help in the required task. This can lead to a very lower
detection performance.

There have been many attempts to perform traffic light detection using mod-
ern convolutional networks as well. For instance, Weber et al. [36] used a con-
volutional network for traffic light detection modifying Alexnet network. The
output of the network is a segmented image which is then given to a bounding
box regressor for detection of traffic lights. In [31], the authors use a combination
of SVM and CNN for the combined task of traffic light detection and recogni-
tion. Similarly, Behrendt et al. [3] uses a combination of detection, tracking,
and classification using a convolutional neural network. Yudin et al. [38] propose
another a fully convolutional network for traffic light detection. Heat-map is ob-
tained highlighting areas of interest followed by a clustering algorithm to obtain
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Evaluating and Bench-marking Object Detection Models 5

final traffic light bounding boxes. Besides being a transfer learning approach, it
has a very low precision of detection as compared to SSD-based models [27].

Dataset Meta Classes Tr. Instance Count Te. Instance Count

LISA TL [20] Go 24182 25222
Stop 26089 30963

Warning 1555 1464

WPI [5] Green 1323 2763
Red 1878 802

BOSCH [2] Green 5422 7569
Yellow 444 154
Red 4164 5321
Off 726 442

S2TLD [37] Green 478 164
Yellow 43 16
Red 761 239
Off 2 1

Wait-on 178 64

Table 2. Tr: Train, Te: Test. Publicly available traffic light datasets, their classes
along with and it’s corresponding number of instances per class. The counts per class
for S2TLD [37] is based on the dataset split generated by authors.

3 Deep learning for Object Detection

With the success of convolutional neural networks to outperform traditional
methods on classification task, there have been similar trends for other com-
puter vision tasks such as object detection. OverFeat [32] is an example of such
a network which outputs bounding boxes along with the scores using a deep
network in a sliding-window fashion. Later, R-CNN [12] was proposed which
helped in increasing the detection accuracy and was faster than the previous
counterparts. The main disadvantage of using R-CNN is that it is expensive
both in time and memory because it executes a CNN forward-pass for each ob-
ject proposal without sharing computation. Spatial Pyramid Pooling Network
(SPPNet) [16] was proposed to improve R-CNN efficiency by sharing computa-
tion. Due to the multi-stage pipeline in SPPNet, the whole process of detection
becomes quite slow. Moreover, the parameters below the spatial pyramid pool-
ing layer cannot be updated while training. After SPPNet, Fast R-CNN [11] was
introduced, which proposes a new training algorithm that provides solutions to
fix the disadvantages of R-CNN and SPPNet by training in a single-stage using
a multi-task approach. But the main bottleneck in this approach is the candi-
date proposal strategy which is still different from the network training process.
To overcome such bottleneck, Faster R-CNN [30], replaced the use of Selective
Search with a Region Proposal Network (RPN) that shares convolutional feature
maps with the detection network, thus enabling nearly cost-free region proposals.
To improve the performance of Faster-RCNN even further, Cascade-RCNN [4]
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was introduced. It consists of a series of detectors sequentially feeding in to the
output of previous detector trained with increasing threshold values making it
very selective for false positives. All these approaches discussed so far are multi-
stage methods where there are two or multiple pipelines involved. There are
other family of networks known as single stage networks including Single Shot
MultiBox Detector (SSD) [23], YOLOv3 [29] and RetinaNet [22] which detects
objects using a fully convolutional network rather than having separate tracks
for detection and classification. This ability leads to a much faster object de-
tection. Duan et al. have also proposed using anchor less technique for object
detection which detects each object as a triplet of keypoints [7].

Standard object detector approaches can be broadly classified in two cate-
gories: (i) two-stage object detectors, (ii) one-stage object detectors. Two-stage
object detectors combine a region-proposal step, region classification and regres-
sion step. On the contrary, one-stage detectors output boxes without a region
proposal step. Two-stage and one-stage object detectors can also be called as
anchor based since these models employ anchors to perform the detection. For
bench-marking different traffic light and traffic sign datasets, we select publicly
available and widely used Faster RCNN (2-stage), Yolov3 (one-stage), RetinaNet
(one-stage) and SSD (one-stage) and Cascade-RCNN (mutli-stage) networks.
Apart from the anchor based models, we also use CenterNet, anchor-less ap-
proach to bench-mark the datasets and analyse the quantitative results obtained.
As mentioned earlier, we select these models for evaluation because of two rea-
sons. Firstly, these models are known for real time performance. Secondly, these
models are widely accepted in academia and industry. Almost all these models
have been designed in such a way that they infer in near real-time and also
validated through our experiments.

4 Experiments

The aim of the experimentation is to bench-mark different open source traffic
light and traffic sign datasets against various state-of-the-art deep learning based
object detection models. We consider datasets pertaining to different geographies
in order to understand how these deep neural networks perform in different
conditions.

4.1 TL and TS datasets

We consider four publicly available datasets for traffic light performance evalu-
ation namely: LISA Traffic Light Dataset, BOSCH Traffic Light Dataset, WPI
Traffic Light Dataset and the recently introduced SJTU Small Traffic Light
Dataset (S2TLD). For traffic sign detection performance, we consider the follow-
ing publicly available datasets: TT100K Dataset, Mapillary Traffic Sign Dataset,
LISA Traffic Sign Dataset and German Traffic Sign Dataset. Figure 1 has repre-
sentative images from all the datasets used for the bench-marking in this paper.
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Evaluating and Bench-marking Object Detection Models 7

All the details for the respective datasets can be obtained from Table 1. We
have merged all the fine classes to their respective meta class for all the datasets
that we consider. For instance, LISA Traffic Light dataset contains seven classes
namely, ”go”, ”goForward”, ”goLeft”, ”warning”, ”warningLeft”,”stop” which
were converted namely to ”go”, ”warning”, ”stop” for fair comparision amongst
the common classes across various datasets. More details regarding the meta
classes for various datasets is given in Table 2 and Table 3.

4.2 Training Setup

For training these models, we deploy frameworks such as Detectron2 [31] and
MMDetection [5] which are modular and easy to train, validatation and testing
on custom datasets. The frameworks have been well documented and imple-
mented in Pytorch [28] deep learning framework. The benchmarking was carried
on a Linux machine having 2 Tesla V100 GPU’s. Each of the detector model have
been trained with some fixed parameters for fair experimentation and trained
until convergence. The batch size is set to 4 with a learning rate of 0.00025,
momentum of 0.9, and weight decay factor of 0.0001. For FasterRCNN and Cas-
cadeRCNN, the backbones considered are Resnet101 and Resnet50. The back-
bones used for Yolov3 and SSD are Darknet-53 [29] and VGG16 [33] with input
resolution of 608x608 and 512x512 respectively.

4.3 Performance Evaluation

The evaluation of all the object detection performance models is done in terms of
precision, recall and mean average precision using intersection-over-union (IoU).
The mAP calculation is done based on the definition for the Pascal VOC 2007
competition with IoU threshold of 0.5 [10]. Equation (1) describes the formula
of the calculation of mean average precision metric at 0.5 threshold. APi is the
average precision per class in the dataset.

mAP@0.5 =
1

N

N∑
i=1

APi (1)

5 Results and Discussion

For the bench-marking task, we use YoloV3, Faster-RCNN, RetinaNet, SSD,
CenterNet and Cascade-RCNN object detection model to serve as baselines.

5.1 Traffic Light Results

Table 4 contains quantitative results on the test set using Faster-RCNN, Yolov3,
CenterNet, SSD, RetinaNet and Cascade-RCNN. We observe that almost on all
datasets, there is a competition of scores between CenterNet and CascadeRCNN.
Individually, WPI dataset has ground truth annotations lying in the range of
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Dataset Meta Classes Tr. Instance Count Te. Instance Count

LISA TS [26] Warning 2611 651
Prohibition 1459 360
Speed-Limit 107 24

Stop 1493 362
Yield 187 49
School 108 26

School-Speed-Limit25 81 24
Zone Ahead 55 14

Ramp-speed-advisory 41 12
Round-about 35 12
Curve-left 27 12

No-Left-Turn 25 12
Thru-Traffic-Merge-Left 22 5

Do-Not-Enter 19 4
No-Right-Turn 14 4

GTSD [18] Prohibitory 299 97
Mandatory 84 30
Danger 116 40
Other 143 43

TT100K [41] Warning 912 456
Prohibitory 12393 6179
Mandatory 3444 1626

MTSD [9] Complementary 9082 1323
Information 6507 948
Regulatory 31574 4593
Warning 14328 2073
Others 118749 17209

Table 3. Tr: Train, Te: Test. Publicly available traffic sign datasets, their classes
along with and it’s corresponding number of instances per class. For MTSD [9] and
GTSD [18], we consider validation set as test set since test set annotations are not
publicly available.
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Evaluating and Bench-marking Object Detection Models 9

Table 4. Results of various object detection models on all traffic light datasets using
Faster R-CNN(FRCNN), SSD, Yolov3(Y3), RetinaNet(RN) and CenterNet(CN) and
Cascade-RCNN(CRNN) . Mean Average Precision(mAP) at 0.5 threshold is indicated
for different classes of the respective datasets. CPU and GPU inference time per im-
age(in seconds) is also indicated in this table. The values in bold font represent the
best results in each category across all methods on the respective datasets. Empty row
values indicate that meta class is absent in the respective dataset.

WPI LISA TL

Class FRCNN SSD Y3 RN CN CRNN FRCNNSSD Y3 RN CN CRNN

go 68.13 91.80 84.0 43.1487.50 77.07 54.85 55.7046.5054.42 59.50 62.27

stop 49.83 85.4075.5013.0981.90 81.23 35.40 53.50 8.80 40.6158.60 45.36

warning - - - - - - 12.00 36.3031.6016.66 32.30 39.63

off - - - - - - - - - - - -

wait-on - - - - - - - - - - - -

mAP@0.5 58.98 88.6079.8028.1284.70 79.15 34.09 48.5029.0037.2350.10 49.09

GPU Inf Time (sec) 0.70 0.03 0.13 0.08 0.25 0.08 0.69 0.02 0.11 0.07 0.20 0.06

CPU Inf Time (sec) 14.32 3.24 7.27 2.24 5.77 5.79 14.14 3.00 5.15 4.05 5.84 6.65

BOSCH S2TLD

Class FRCNNSSD Y3 RN CN CRNN FRCNNSSD Y3 RN CN CRNN

go 61.09 73.2050.1066.7683.50 67.91 85.89 87.5091.1089.80 91.00 94.15

stop 60.15 64.4071.7046.39 79.00 79.87 85.73 87.5 92.3 90.5491.00 86.08

warning 27.66 8.50 64.5011.98 48.30 62.51 58.20 18.6081.2053.52 65.80 92.26

off 0.01 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.40 0.00

wait-on - - - - - - 93.76 95.9090.4098.2098.40 92.56

mAP@0.5 37.23 36.5046.6031.2852.70 52.57 64.72 57.9071.0066.38 69.30 73.01

GPU Inf Time (sec) 0.69 0.03 0.12 0.08 0.27 0.07 0.60 0.03 0.14 0.13 0.25 0.08

CPU Inf Time (sec) 14.04 3.11 8.75 4.62 5.74 5.69 17.91 2.96 5.76 5.37 5.83 7.42
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Table 5. Number of trainable parameters(in million) and number of floating point
operations for all the object detection models.

OD Model Backbone Parameters (in million) GFlops

FasterRCNN [30] ResNet101 104.38 423.16
SSD [23] VGG16 36.04 355.12
Yolov3 [29] Darknet53 61.95 171.91
RetinaNet [22] ResNet50 37.91 215.49
CenterNet [7] ResNet18 14.44 44.78
CascadeRCNN[4] ResNet50-FPN 69.10 214.44

medium and large box area. Hence, SSD performs comparatively better among
all the competitive baselines because SSD focuses better on large sized objects.
SSD’s performance is followed by CenterNet which is an anchor-less approach
that outperforms other anchor based approaches.

For LISA TL and BOSCH and S2TLD, majority of the ground truth TL
instances are located very far away from the camera view, thus pertaining to a
small annotation box area. In such scenario, anchors have to adjust a lot to cater
the needs of the algorithm in order to match the location of the object of interest.
However, CenterNet and CascadeRCNN, both perform better. The reason is that
Centernet is an anchor-less approach, eliminating the anchor dependency while
CascadeRCNN applies repeated RPN blocks for better detection at uniform
thresholds. An observation to note is that class ”off” has almost zero mAP even
though the class instances are present in BOSCH and S2TLD datasets. The
plausible reason is that the class ”off” indicates the no traffic light is activated
but the network is trained ideally to detect colors since individually in both the
datasets, class ”off” has very few instances compared to other classes.

Figure 2 shows some qualitative results on few selected frames of the re-
spective traffic light datasets. Visually we infer that all the models are able to
detect traffic light at different angles of rotation. On BOSCH dataset, Faster-
RCNN and RetinaNet are able to detect the traffic light present on the left in
the presence of occlusion and lighting in the image. On the other hand, Yolov3
and CenterNet are able to detect the traffic light on the left. All the models are
able to detect horizontal lights for S2TLD dataset and vertical lights for LISA
TL and WPI.

5.2 Traffic Sign Results

Table 6 contains quantitative results obtained on the test set using Faster-RCNN,
YoloV3, CenterNet, SSD, RetinaNet and CascadeRCNN. From the results, it can
be inferred that CenterNet outperforms almost all the models on all the datasets.
For LISA TS, CascadeRCNN achieved best mAP because of the presence of
evenly distributed traffic signs in medium and small annotation box areas.

Figure 2 shows qualitative results on the frames of respective traffic sign
datasets. Visual results indicate that models are able to predict correctly on
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Table 6. Results of various object detection models on traffic sign datasets using
Faster R-CNN(FRCNN), SSD, Yolov3(Y3), RetinaNet(RN) and CenterNet(CN). Mean
Average Precision(mAP) at 0.5 threshold is indicated in the last row for different
classes of the respective datasets. CPU and GPU inference time per image(in seconds)
is also indicated in this table. The values in bold font represent the best results in each
category across all methods on the respective datasets. Empty row values indicate that
meta class is absent in the respective dataset.

TT100K GTSD

Class FRCNNSSD Y3 RN CN CRNN FRCNNSSD Y3 RN CN CRNN

warning 85.19 79.90 92.3 88.7297.90 95.48 - - - - - -

prohibitory 78.65 79.9092.5092.40 97.20 94.46 66.40 91.60 98.20 81.98 99.20 75.13

mandatory 83.71 82.8088.9087.0497.20 76.82 65.65 80.10 85.60 77.28 97.60 68.42

danger - - - - - - 78.50 96.70100.0096.37100.00 86.71

regulatory - - - - - - - - - - - -

complementary - - - - - - - - - - - -

information - - - - - - - - - - - -

speed-limit - - - - - - - - - - - -

stop - - - - - - - - - - - -

yield - - - - - - - - - - - -

school - - - - - - - - - - - -

school-speed-limit25 - - - - - - - - - - - -

zone-ahead - - - - - - - - - - - -

ramp-speed-advisory - - - - - - - - - - - -

round-about - - - - - - - - - - - -

curve-left - - - - - - - - - - - -

no-left-turn - - - - - - - - - - - -

thru-traffic-merge-left - - - - - - - - - - - -

do-not-enter - - - - - - - - - - - -

no-right-turn - - - - - - - - - - - -

other - - - - - - 60.06 73.70 90.00 86.81 92.20 65.03

mAP@0.5 82.51 80.9091.6089.3997.40 88.92 67.65 85.50 93.40 85.68 97.20 73.85

GPU Inf Time. (sec) 0.69 0.03 0.10 0.07 0.21 0.07 0.67 0.002 0.13 0.08 0.21 0.07

CPU Inf Time. (sec) 15.86 2.53 9.23 2.09 5.83 6.69 14.90 3.04 9.81 2.14 6.13 8.15

MTSD LISA TS

Class FRCNNSSD Y3 RN CN CRNN FRCNNSSD Y3 RN CN CRNN

warning 66.78 59.2060.0066.6881.00 75.98 84.82 90.20 95.00 88.74 88.90 96.38

prohibitory - - - - - - 82.07 90.40 93.90 84.94 92.80 95.77

mandatory 83.71 82.8088.9087.0497.20 76.82 - - - - - -

danger - - - - - - - - - - - -

regulatory 57.70 44.4053.3054.0281.50 73.94 - - - - - -

complementary 50.74 38.9048.5041.49 73.00 74.27 - - - - - -

information - - - - - - 36.89 28.70 38.10 35.13 67.50 30.61

speed-limit - - - - - - 25.82 48.90 94.60 96.70 80.90 96.78

stop - - - - - - 74.18 84.30 92.10 84.20 85.10 94.27

yield - - - - - - 30.92 55.30 88.70 44.65 66.80 87.50

school - - - - - - 62.79 91.5 99.30 25.74 93.50 87.56

school-speed-limit25 - - - - - - 84.73 74.50 95.40 100.00 91.10 95.60

zone-ahead - - - - - - 46.37 11.20 80.00 88.6 59.80 100.00

ramp-speed-advisory - - - - - - 73.62 74.30100.00 79.86 100.00 89.25

round-about - - - - - - 72.70 51.50 71.40 48.67 89.10 97.69

curve-left - - - - - - 67.06 27.50 88.30 40.77 88.30 94.54

no-left-turn - - - - - - 25.49 46.60100.00 67.85 95.30 80.01

thru-traffic-merge-left - - - - - - 80.19 33.50100.00 60.13 100.00 63.51

do-not-enter - - - - - - 88.61 5.00 93.30 83.31 88.60 96.70

no-right-turn - - - - - - 0.00 24.00 20.00 75.24 69.50 100.00

other 44.24 27.6030.3034.0055.50 30.01 - - - - - -

mAP@0.5 82.51 80.9 91.6 89.3997.40 88.92 59.96 53.92 87.50 71.27 86.0 91.71

GPU Inf Time. (sec) 0.69 0.03 0.10 0.07 0.21 0.07 0.68 0.03 0.11 0.077 0.23 0.06

CPU Inf Time. (sec) 15.86 2.53 9.23 2.09 5.83 6.69 18.03 2.95 8.28 3.72 5.20 2.62
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all the classes that they have been trained on. SSD and RetinNet output some
false detections on LISA TS and GTSD datasets respectively but CenterNet
performs detection on all the datasets with higher confidence, even in slightly
darker imaging environment as for the predictions of MTSD dataset.

5.3 Object Detection Model’s Statistics

Table 5 shows the number of trainable parameters and the floating point oper-
ations(GFlops) of the respective object detection models. From the figures, it
is evident that FasterRCNN has the highest number of parameters since it has
Resnet101 as the backbone architecture while CascadeRCNN and RetinaNet
uses Resnet50 as the backbone architecture. This is also evident in Table 4 and
Table 6 for GPU and CPU inference times. SSD operates on lower image resolu-
tion compared to Yolov3, hence the run-time for SSD is much lower. CenterNet
uses Resnet18 [17] as the backbone having the lowest number of trainable pa-
rameters and the number of floating point operations surpassing all anchor based
models in terms of detection and also real-time performance.

6 Conclusion

In this work, we used various state-of-the-art models for object detection and
evaluate their performance on publicly available traffic light datasets: LISA TL,
WPI, BOSCH and S2TLD and traffic sign datasets: LISA TS, GTSD, TT100K
and MTSD. To the best of our knowledge, this work is the first detailed analysis
of different object detection models (anchor based and anchor-less) on common
meta classes of various traffic light and traffic sign datasets. From the results, it is
evident that anchor less methods outperform anchor-based methods on almost
all traffic light and traffic sign datasets irrespective of the instance location.
For traffic light instances located nearby, even SSD performs better compared to
any other anchor based model for WPI dataset. Specifically for LISA TS, Yolov3
marginally outperforms CenterNet due to a balance of traffic sign instances in
medium and large annotation box areas from the camera view. In future work, we
would like to explore the direction of the effect of weather patterns and the role
of domain adaptation techniques to increase the detection accuracies of small
objects such as traffic sign and traffic light.
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