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Abstract. Hyperspectral (HS) images are used in many fields to im-
prove the analysis and understanding performance of captured scenes, as
they contain a wide range of spectral information. However, the spatial
resolution of hyperspectral images is usually very low, which limits their
wide applicability in real tasks. To address the problem of low spatial res-
olution, super-resolution (SR) methods for hyperspectral images (HSI)
have attracted widespread interest, which aims to mathematically gener-
ate high spatial resolution hyperspectral (HR-HS) images by combining
degraded observational data: low spatial resolution hyperspectral (LR-
HS) images and high resolution multispectral or RGB (HR-MS/RGB)
images. Recently, paradigms based on deep learning have been widely
explored as an alternative to automatically learn the inherent priors for
the latent HR-HS images. These learning-based approaches are usually
implemented in a fully supervised manner and require large external
datasets including degraded observational data: LR-HS/HR-RGB images
and corresponding HR-HS data, which are difficult to collect, especially
for HSI SR scenarios. Therefore, in this study, a new unsupervised HSI
SR method is proposed that uses only the observed LR-HS and HR-RGB
images without any other external samples. Specifically, we use an RGB-
driven deep generative network to learn the desired HR-HS images us-
ing a encoding-decoding-based network architecture. Since the observed
HR-RGB images have a more detailed spatial structure and may be more
suitable for two-dimensional convolution operations, we employ the ob-
served HR-RGB images as input to the network as a conditional guide
and adopt the observed LR-HS/HR-RGB images to formulate the loss
function that guides the network learning. Experimental results on two
HS image datasets show that our proposed unsupervised approach pro-
vides superior results compared to the SoTA deep learning paradigms.

Keywords: Hyperspectral image · Super-resolution ·Unsupervised learn-
ing.
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1 Introduction

With hyperspectral (HS) imaging, detailed spectral direction traces and rich
spectral features in tens or even hundreds of bands can be obtained at every
spatial location in a scene, which can significantly improve the performance of
different HS processing systems. Existing HS image sensors typically collect HS
data at a low spatial resolution, which severely limits their wide applicability
in the real world. Therefore, generating high-resolution hyperspectral (HR-HS)
images by combining the degraded observational data: low-resolution hyperspec-
tral (LR-HS) and high-resolution multispectral/RGB (HR-MS/RGB) images,
known as HS super-resolution (HSI SR) images, has attracted great attention
in the field of computer vision [29,32], medical diagnosis [19,21,33], mineral ex-
ploration [24,30] and remote sensing [3, 20, 23]. According to the reconstruction
principles, HSI SR is mainly divided into two categories: traditional mathemati-
cal model-based methods and deep learning-based methods. In the following, we
will describe these two types of methods in detail.

1.1 Traditional Mathematical Model-based Methods

In the past decades, most HSI SR methods have focused on studying various
manually computed a prior parameters to develop a mathematical model and
use optimization techniques to solve the problem. Specifically, such methods
have focused on developing a mathematical formulation to model the process
of degrading HR-HS images into LR-HS images and HR-RGB images. Since
the known variables of the observed LR-HS/HR-RGB images are much smaller
than the underestimated variables of the HR-HS images, this task is extremely
challenging and direct optimization of the formulated mathematical model would
lead to a very unstable solution. Therefore, existing effort usually exploits various
priors to regularize the mathematical model, i.e., to impose constraints on the
solution space. Depending on the priors to be investigated, existing studies are
generally classified into three different approaches: spectral unmixing-based [16],
sparse representation-based [6] and tensor factorization-based methods [4]. In the
spectral un-mixing-based method, Yokoya et al. [31] proposed a coupled non-
negative matrix decomposition (CNMF) method, which alternately blends LR-
HS images and HR-RGB images to estimate HR-HS images. Recently, Lanaras
et al. [16] proposed a similar framework to jointly extract two observed images
by decomposing the original optimization problem into two constrained least
squares problems. A similar framework was proposed by Dong et al. [6], which
employed the alternating direction method of multipliers (ADMM) to solve the
spectral hash model for the robust reconstruction of the base image of HR-HS
images.

In addition, sparse representation is widely used as an alternative mathe-
matical model for HSI SR, where a spectral dictionary is first learned from the
observed HR-LS image, and then the sparse coefficients of the HR-RGB image
are calculated to reconstruct the HR-HS image. For example, Zhao et al. [34]
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used the K-SVD method to learn the dictionary, and then adopted the sparse ma-
trix decomposition to combine the LR-HS and HR-RGB images to reconstruct
the HR-HS image. Inspired by the spectral similarity of neighboring pixels in
latent HS images, Akhtar et al. [1] proposed to perform group sparsity and non-
negativity representations, while Kawakami et al. [15] used a sparse regularizer
to decompose the spectral dictionary. In addition, Han et al. [9] proposed a non-
negative sparse coding algorithm that effectively exploits pixel sparsity and non-
local spatial similarity in HR-HS images. Furthermore, the tensor factorization-
based approach was shown to be feasible for the HSI SR problem. Motivated
by the inherent low dimensionality of spectral signatures and the 3D structure
of HR-HS images, He et al. [13] employed matrix factorization to decomposed
the HR-HS image into two low-rank constraint matrices and showed impressive
super-resolution results. Despite some improvements achieved using manually
designed priors, super-resolution performance tends to be unstable and sensitive
to the content varying in the under-studying investigated images as well as may
lead to significant spectral distortions due to the insufficient representation of
empirically designed priors.

1.2 Deep Learning-based Methods

Deep Supervised Learning-based Methods Due to the high success of
DCNN in different vision tasks, DCNN-based approaches have been proposed
for HSI SR tasks to automatically learn specific priors for the latent HR-HS
images. Han et al. [10] firstly conducted a pioneering work for merging the
HS/RGB image to estimating the latent HR-HS image using deep learning net-
work, which contained three simple convolutional layers but demonstrated very
impressive performance, and then employed more complex CNN architectures
such as ResNet and DenseNet [8] for performance improvement. Dian et al. [5]
proposed an optimization and learning integration strategy for the fusion task by
first solving the Sylvester equation and then exploring a DCNN-based approach
to improve the initialization results. Han et al. [12] further investigated a multi-
level and multi-scale spatial and spectral fusion network to effectively fuse the
observed LR-HS and HR-RGB images with large spatial structure differences.
Xie et al. [28] studied the MS/HS fusion network using a low-resolution imag-
ing model and spectral low-rank property of the HR-HS images, and solved the
proposed MS/HS fusion network using an approximate gradient strategy. In ad-
dition, Zhu et al. [35] investigated a lightweight deep neural network, dubbed as
the progressive zero centric residual network (PZRes-Net), to achieve efficiency
and performance in solving the HS image reconstruction problem. Despite the
significant improvement in reconstruction performance, all the above DCNN-
based approaches require training with large external datasets, including the
degraded LR-HS/HR-RGB images and corresponding HR-HS images, which are
difficult to collect, especially for HSI SR tasks.

Deep Unsupervised Learning-based Methods As mentioned above, in
practice, it is very difficult to collect enough training triples, especially the latent
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HR-HS images for a good-generalization CNN model. Therefore, the quality and
quantity of the collected training datasets (external datasets) usually become the
bottleneck of DCNN-based approaches. To alleviate the heavy reliance on exter-
nal datasets, several deep unsupervised learning methods have been investigated
to take advantage of the powerful modeling capabilities of deep networks [17].
Qu et al. [22] attempted to solve the HSI super-resolution problem with unsu-
pervised learning strategy and developed an encoder-decoder architecture that
exploits the approximate structure of the low-rank spectral prior in the latent
HR-HS images. Although this approach does not require external training sam-
ples to construct a CNN-based end-to-end model for the recovery of the HR-HS
images, it requires careful designing alternative optimization procedure for two
sub-problems, and tends to produce unstable super-resolution results. Liu et
al. [18] proposed a deep unsupervised fusion learning (DUFL) method to gener-
ate the HR-HS image from a random noisy input using the observed HR-RGB
and LR-HS images only. However, DUFL aims to use generative networks to
learn HR-HS images from a random noise and therefore does not take full use of
the available information in the observations such as the HR-RGB image with
high spatial resolution structures. Subsequently, Uezato et al. [25] used a deep
decoder network to generate the latent HR-HS images from both noisy input
data as well as the observed HR-RGB observations as guided information, called
a guided deep decoder (GDD) network. In addition, Fu et al. [7] propose to con-
duct joint optimization of the optimal CSF and the potential HR-HS images from
the observed observations only. Although these current unsupervised methods
illustrate the potential for plausible HR-HS image generation, most of them do
not fully exploit the high-resolution spatial structure of the observed HR-RGB
images. Therefore, there is still room for improvement in terms of performance.

To handle the above mentioned issues, this study proposes a new deep RGB-
driven generative network for unsupervised HSI SR that uses the observed HR-
RGB images instead of a random noise as the network input. Specifically, by
leveraging the observed HR-RGB images with high-resolution spatial structure
as the input, we design an encoder-decoder based two-dimensional convolutional
network to learn the latent HR-HS image, and then follow the specially designed
convolutional layers to implement the spatial and spectral degradation proce-
dure for obtaining the approximated LR-HS and HR-RGB images. Thus the loss
functions for training the generative network can be formulated using the ob-
served LR-HS and HR-RGB image only where no external samples are required
in the end-to-end unsupervised learning model. Experimental results on two HS
datasets show that our method outperforms the state-of-the-art methods. The
main advantages of this study are summarized as follows.

I. We propose a RGB-driven generative network by making full use of the high-
resolution spatial structure in the observed RGB image as the conditional
input for robust HR-HS image estimation.

II. We learn the specific CNN model directly from the observations without the
need for a labeled training set.
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III. We construct a simple convolution-based degradation modules using the
specifically designed depth-wise and point-wise convolution layers for imi-
tating the observation procedure, which are easy to be optimized with gen-
erative networks.

2 Proposed Method

In this section, we first introduce the problem of formulating the HSI SR task
and then describe our proposed deep RGB-driven generative network.

2.1 Problem formulation

The goal of the HSI SR task is to generate HR-HS images by combining the
LR-HS and HR-RGB images: Iy ∈ <w×h×L and Ix ∈ <W×H×3, where W (w)
and H(h) denote the width and height of the HR-HS (LR-HS) image and L(3)
denotes the spectral number. In general, the degradation process of the obser-
vations: Ix and Iy from the HR-HS image Iz can be mathematically expressed
as follows.

Ix = k(Spa) ⊗ I(Spa)z ↓ +nx, Iy = Iz ∗C(Spec) + ny, (1)

where ⊗ denotes the convolution operator, k(Spa) is the two-dimensional blur
kernel in the spatial domain, and (Spa) ↓ denotes the down-sampling operator
in the spatial domain. C(Spec) is the spectral sensitivity function of the RGB
camera (three filters in the one-dimensional spectral direction), which converts
L spectral bands into RGB bands, and nx, ny are additive white Gaussian noise
(AWGN) with a noise level of σ. For simplicity, we rewrite the mathematical
degradation model in Eq. 1 as the following matrix form.

Ix = DIz + nx, Iy = IzC+ ny, (2)

where D is the spatial degradation matrix containing the spatial blurring matrix
and the down-sampling matrix, and C is the spectral transformation matrix
representing the camera spectral sensitivity function (CSF). By assuming the
known spatial and spectral degradations, the HSI SR problem can be solved
intuitively through minimizing the following reconstruction errors.

Iz
∗ = argmin

Iz
‖Ix −DIz‖2F + ‖Iy − IzC‖2F , (3)

where |·|F denotes the Frobenius norm. However, Eq. 3 may have several optimal
solutions that yield minimal reconstruction errors, and thus direct optimization
would lead to a very unstable solution. Most existing methods typically use differ-
ent hand-crafted priors to model the potential HR-HS to impose the constraints
on Eq. 3 for narrowing the solution space, and demonstrate great performance
improvement with elaborated priors. The prior-regularized mathematical model
approach is expressed as follows.

Iz
∗ = argmin

Iz
‖Ix −DIz‖2F + ‖Iy − IzC‖2F + αφ(Iz), (4)
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Fig. 1. Proposed framework of deep RGB-driven generative network. FT Conv Mod-
ule denotes feature transfer convolution module. Spatial Degradation module is imple-
mented by a specifically designed depth-wise convolution layer while Spectral Degra-
dation module is realized by a point-wise convolution layer.

where φ(Iz) is used as the regularization term for modeling the prior in the latent
HR-HS image, while α is the hyper-parameter for adjusting the contribution of
the regularization term and the reconstruction error. However, the investigated
priors in the existing methods are designed empirically and usually face difficulty
to sufficiently modeling the complicated spatial and spectral structures.

2.2 Proposed deep RGB-driven generative network

As shown in many vision tasks, deep convolutional networks have powerful mod-
eling capabilities to capture the inherent prior knowledge of different visual data
(images), and in this study, deep learning networks are used to automatically
learn the prior knowledge embedded in HR-HS images. Specifically, we use an
encoder-decoder-based generative network to automatically reconstruct HR-HS
images. In the absence of the ground-truth HR-HS images for training the gen-
erative network as in the conventional fully supervised learning networks, we
employ the observed HR-RGB and LR-HS images to formulate the loss func-
tions expressed in Eq. 3.

Specifically, given the predicted HR-HS image Îz = gθ(·), where gθ de-
notes the generative network and θ is its parameter, we specifically designed
a depth-wise convolutional layer to implement a spatially degradation model as
FSpa(̂Iz) and a point-wise convolutional layer to implement the spectral trans-
form FSpe(̂Iz). By simply fixing the weights of the specially designed convolu-
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tional layers in the spatial degradation matrix D and the CSF matrix C, we can
transform the output of the generative network into the approximated versions
of the HR-RGB image : Ix and the LR-HS image: Iy. According to Eq. 3, we
minimize the reconstruction errors of the under-studying LR-HS and HR-RGB
images to train the generative network, formulated as the follows:

θ∗ = argmin
θ
‖Ix − FSpe(gθ(·))‖2F + ‖Iy − FSpa(gθ(·))‖2F , (5)

Since the generative network gθ can potentially learn and model the inherent
priors in the latent HR-HS image, it is not necessary to explicitly impose prior
modeling constraints as the regularization termin the Eq. 5. The conceptual
framework of the proposed deep RGB-driven generativenetwork is shown in Fig.
1. It can be trained using the observed LR-HS and HR-RGB image only without
any external data. In the following subsections, we will present the generative
network architecture and the network inputs.

The generative network architecture: For the generative network gθ,
any DCNN can be used to serve as the beseline narchitecture in our proposed
framework. Since the latent HR-HS images often contain various structures, rich
textures, and complex spectra, the employed generative network gθ has to possess
enough modeling ability to ensure reliable HR-HS image representation. Several
generative architectures [2] have been investigated and significant progress has
been made in generating high-quality natural images [14], for example in the
context of the adversarial learning research. Since our unsupervised framework
requires training a specific CNNmodel for each under-studying observation, shal-
lower networks are preferred to reduce the training time. Moreover, it is known
that a deeper network architecture, which can capture feature representation in
a large receptive field can improve the super-resolution performance. Therefore,
a shallow network with sufficient representation modeling capability in a larger
receptive field would be suitable for our network structure.

It is well known that encoder-decoder networks have a shallow structure
being possible to learn feature representation in large-scale spatial context due
to down-sampling operations between adjacent scales, and thus we employ the
encoder-decoder structure as our generative network. In detail, the generative
network consists of an encoder subnet and a decoder subnet, and both encoder
and decoder include multiple blocks with different scales that can capture feature
at different receptive fields. The outputs of all blocks in the encoder subnet are
transferred to the corresponding blocks in the decoder using a convolution-based
feature transfer module (FT Conv module) to reuse the learned detailed features.
Each block consists of three convolutional/RELU pairs, where a max pooling
layer with 2 × 2 kernels are used to reduce the feature map size between the
blocks of the encoder, and an up-sampling layer is used to double the feature
map size between the blocks of the decoder. Finally, a vanilla convolution-based
output layer is used to estimate the underlying HR-HS image.
The RGB-guided input: Most generative neural networks are trained to syn-
thesize the target images with the specific defined concept from noisy vectors,
which are randomly generated based on a distribution function (e.g., Gaussian
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Fig. 2. Visual results of mathematical optimization-based methods: SNNMF [27],
NSSR [6] and deep learning-based methods: uSDN [22], DUFL [18] on the CAVE
dataset and our method with the up-scale factor 8.

or uniform distribution). As recent studies have confirmed, randomly generated
noisy inputs usually produce sufficiently diverse and unique images. Our HSI
SR task aims to use the observed LR-HS and HR-RGB images to learn the
corresponding HR-HS images. Simply using noise as input does not take full
advantage of the existed information in the observations. Therefore, we attempt
to employ the available observation as a conditional guide for our generative
network.

The observed HR-RGB images are known to have a high spatial resolution
structure, and it is expected to assist the two-dimension convolution-based gen-
erative network learning more effective representation for reliable HR-HS image
recovery. The observed LR-HS images can also be used as conditional inputs
to the network. However, the low-resolution spatial structure may lead to local
minimization of the network training process, which may have a negative impact
on the prediction results. More importantly, the magnification factor, e.g., 10 for
31 spectral bands estimation from RGB in the spectral domain„ is usually much
smaller than in the spatial domain (64 in total (8× 8) with an up-sampling fac-
tor of 8), so we use the observed HR-RGB image as conditional network input,
denoted as Z∗ = gθ(Iy).

3 Experiment Result

3.1 Experimental Setting

We evaluated our method on two commonly used datasets, Cave and Harvard
datasets. The Cave dataset contains 32 HS images taken in real material and
object space, all with the same spatial resolution, e.g. 512×512 with 31 adjacent
spectral bands ranging from 400 nm to 700 nm. The Harvard dataset contains 50
HS images taken during daylight hours, both outdoors and indoors, all with the
same spatial resolution of 1392 × 1040 and 31 spectral bands ranging from 420
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Table 1. Compared results with the SoTA methods including mathematical
optimization-based and deep learning-based methods on both CAVE and Harvard
datasets with the up-scale factors 8 and 16.

CAVE Harvard

RMSE↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓ RMSE↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

Up-scale factor =8

Mathematical

optimization

GOMP 5.69 33.64 - 11.86 2.99 3.79 38.89 - 4.00 1.65

MF 2.34 41.83 - 3.88 1.26 1.83 43.74 - 2.66 0.87

SNNMF 1.89 43.53 - 3.42 1.03 1.79 43.86 - 2.63 0.85

CSU 2.56 40.74 0.985 5.44 1.45 1.40 46.86 0.993 1.77 0.77

NSSR 1.45 45.72 0.992 2.98 0.80 1.56 45.03 0.993 2.48 0.84

Deep

learning

SSFNet 1.89 44.41 0.991 3.31 0.89 2.18 41.93 0.991 4.38 0.98

DHSIS 1.46 45.59 0.990 3.91 0.73 1.37 46.02 0.981 3.54 1.17

ResNet 1.47 45.90 0.993 2.82 0.79 1.65 44.71 0.984 2.21 1.09

uSDN 4.37 35.99 0.914 5.39 0.66 2.42 42.11 0.987 3.88 1.08

DUFL 2.08 42.50 0.975 5.36 1.16 2.38 42.16 0.965 2.35 1.09

Ours 1.35 46.20 0.992 3.05 0.77 1.07 49.17 0.994 1.59 0.72

Up-scale factor = 16

Mathematical

optimization

GOMP 6.08 32.96 - 12.60 1.43 3.83 38.56 - 4.16 0.77

MF 2.71 40.43 - 4.82 0.73 1.94 43.30 - 2.85 0.47

SNNMF 2.45 42.21 - 4.61 0.66 1.93 43.31 - 2.85 0.45

CSU 2.87 39.83 0.983 5.65 0.79 1.60 45.50 0.992 1.95 0.44

NSSR 1.78 44.01 0.990 3.59 0.49 1.65 44.51 0.993 2.48 0.41

Deep

learning

SSFNet 2.18 41.93 0.991 4.38 0.98 1.94 43.56 0.980 3.14 0.98

DHSIS 2.36 41.63 0.987 4.30 0.49 1.87 43.49 0.983 2.88 0.54

ResNet 1.93 43.57 0.991 3.58 0.51 1.83 44.05 0.984 2.37 0.59

uSDN 3.60 37.08 0.969 6.19 0.41 9.31 39.39 0.931 4.65 1.72

DUFL 2.61 40.71 0.967 6.62 0.70 2.81 40.77 0.953 3.01 0.75

Ours 1.71 44.15 0.990 3.63 0.48 1.28 47.37 0.992 1.92 0.49
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Table 2. Ablation studies of different numbers of employed blocks in the generative
network and loss terms on CAVE dataset with the up-scale factor 8.

Number of

employed blocks
Loss RMSE↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

2

Both

1.45 45.49 0.992 3.47 0.81

3 1.42 45.69 0.992 3.28 0.81

4 1.38 46.05 0.993 3.13 0.77

Loss1 26.27 19.85 0.601 43.53 16.19

5

Loss2 3.30 38.57 0.972 3.68 1.88

Both 1.35 46.20 0.992 3.05 0.77

Table 3. Ablation studies of different network inputs on CAVE dataset with the up-
scale factor 8.

Block number:5

Loss: both

Input RMSE↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

Noise 2.10 42.53 0.978 5.30 1.12

Combined 1.46 45.47 0.992 3.27 0.81

Combined

+ noise
1.44 45.61 0.992 3.72 0.80

Ours (RGB) 1.35 46.20 0.992 3.05 0.77
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Fig. 3. Visual results of mathematical optimization-based methods: SNNMF [27],
NSSR [6] and deep learning-based methods: uSDN [22], DUFL [18] on the Harvard
dataset and our method with the up-scale factor 8.
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Fig. 4. SAM vuisual results of mathematical optimization-based methods: SNNMF
[27], NSSR [6] and deep learning-based methods: uSDN [22], DUFL [18] on the CAVE
and Harvard datasets and our method with the up-scale factor 8.

nm to 720 nm. For both datasets, we transformed the corresponding HS images
using the spectral response function of the Nikon D700 camera to obtain HR-
RGB HS images, while LR-HS images were obtained by bicubic downsampling
of the HS images. To objectively evaluate the performance of different HSI SR
methods, we adopted five widely used metrics, including root mean square error
(RMSE), peak signal to noise ratio (PSNR), structural similarity index (SSIM),
spectral angle mapper (SAM), and relative dimensional global errors (ERGAS).

First, we conducted experiments using the generative network with five blocks,
all two terms of loss in Eq. 5 and the RGB input for comparing with the state-
of-the-art methods, and then we performed an ablation study by varying the
number of blocks, loss terms, and inputs to the generative network.
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3.2 Comparisons with the State-of-the-art Methods

We compared our approach with various state-of-the-art methods, including
those based on mathematical optimization-based methods: GOMP [26], MF [15],
SNNMF [27], CSU [31], NSSR [6], supervised deep learning-based methods:
SSFNet [9], DHSIS [5], ResNet [11], and unsupervised deep learning-based meth-
ods: uSDN [22], DUFL [18]. Table 1 shows the comparative results for the spatial
expanding factor 8. Table 1 demonstrates that our method is able to significantly
improve the performance in term of all evaluation metrics. In addition, Fig. 2
and Fig. 3 show the visualization difference results of two representative im-
ages with different deep unsupervised learning methods. Fig. 4 illuminates the
SAM visualization results on both CAVE and Harvard datsets. It also manifests
that our proposed method provides small reconstruction errors in most spatial
locations.

3.3 Ablation Study

We validate the performance effect by varying the block (scale) numbers of the
generative network, the used reconstruction error term, and the network inputs.
As mentioned above, we used an encoder-decoder structure where both encoder
and decoder paths contain multiple blocks as our specific CNN model to ex-
tract multi-scale contexts in different receptive fields. To test the efficiency of
the used multiple scales, we varied the block number from 2 to 5 and performed
HR-HS image learning experiments. The comparative results are shown in the
Table 2, where more blocks demonstrates the improvement in term of the perfor-
mance, while the generative network achieves impressive result even with only
two blocks. In addition, as described in Eq. 5, we use the reconstruction errors
of both observed HR-RGB and LR-HS images (denoted as ‘both’ loss) as loss
functions, and we further take one term only in Eq. 5 as the loss formulas used
to train our generative the network, denoted as loss 1 and loss 2 for comparison.
Table 2 illustrates the comparison results using different loss functions, which
indicates that the proposed two loss terms perform much better.

Finally, we verified the effect of different inputs to the generative network.
As mentioned above, it is popular in most generative networks to use randomly
generated noisy inputs to synthesize different natural images. To make full use of
the available data, we employed the observed HR-RGB image as the conditional
input to guide the training of the proposed generative network. Without lack of
generality, we also combined the HR-RGB image with the up-sampled LR-HS
image together as the network input (marked as ‘combined’) and additionally
disturb the combined input with a small level of noise in each training step to
increase the robustness of model training. The comparison results of different
network inputs are shown in Table 3, and the conditional input using the HR-
RGB image manifests the best recovery performance.
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4 Conclusion

In this study, we proposed a new deep RGB-driven generative network that learns
the latent HR-HS image from its degraded observations without the need of any
external data. To build an efficient and effective specific CNN model, we adopted
an encoder-decoder-based generative network with a shallow structure but being
able to perform multi-scale spatial context exploration in large receptive fields to
learn high-representative feature of the latent HR-HS image with the conditioned
HR-RGB image as a guide. Moreover, since the under-studying scene do not have
the ground-truth HR-HS image, we specifically designed the convolution-based
degradation modules to transform the predicted HR-HS image in the generative
network, and then obtained the approximated observations to formulate the loss
function for network training. Experimental results showed that our method
significantly improves the performance over the SoTA methods.
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