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Abstract. Video-based person re-identification aims to match the same
identification from video clips captured by multiple non-overlapping cam-
eras. By effectively exploiting both temporal and spatial clues of a video
clip, a more comprehensive representation of the identity in the video
clip can be obtained. In this manuscript, we propose a novel graph-based
framework, referred as Temporal Extension Adaptive Graph Convolution
(TE-AGC) which could effectively mine features in spatial and temporal
dimensions in one graph convolution operation. Specifically, TE-AGC
adopts a CNN backbone and a key-point detector to extract global and
local features as graph nodes. Moreover, a delicate adaptive graph con-
volution module is designed, which encourages meaningful information
transfer by dynamically learning the reliability of local features from
multiple frames. Comprehensive experiments on two video person re-
identification benchmark datasets have demonstrated the effectiveness
and state-of-the-art performance of the proposed method.

Keywords: person ReID · graph convolution network.

1 Introduction

Person re-identification (ReID) [1, 2] is an efficient computer vision technique to
retrieve a specific person from multiple non-overlapping cameras. Person ReID
has a wide range of applications such as security, video surveillance, etc., and has
received extensive attention from researchers. Although many research results
have been achieved, this task is still challenging due to background disturbances,
occlusions, perspective changes, pose changes and other problems.

There are generally two kinds of person ReID processing methods [1]. One
is image-based methods [3–9], which exploit temporally incoherent static images
to retrieve pedestrians. The other is video-based methods [10–14], where both
training and test data consist of temporally continuous image sequences. In
recent years, impressive progress has been made in image-based person ReID.
Some practical solutions are proposed especially for complex problems, such as
occlusion [9, 15, 16]. However, the information contained in a single image is
limited. If the information contained in a short video clip of a pedestrian could
be effectively mined, it would significantly benefit the robustness of retrieval
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results. Therefore, video-based person ReID methods concurrently utilize spatial
and temporal information of the video clip and have the potential to better solve
the difficult problems in person ReID.

There have been several typical video-based person ReID methods that ag-
gregate temporal and spatial cues of video clips to obtain discriminative repre-
sentations. Several elementary methods extract global features from each frame
independently. Then the features of each frame are aggregated into the repre-
sentation of a video clip by a temporal pooling layer or recurrent neural network
(RNN) [17–19]. Due to the problems such as occlusion and background noise,
these methods usually do not achieve excellent results. Recent works began to
focus on the role of local features. Some works divide video frames into rigid
horizontal stripes or utilize an attention mechanism to extract local appearance
features [20–24]. However, it is hard to align local features learned from videos
precisely. Some methods adopt pose estimation model to detect key points of
identity in order to obtain well aligned local features [15, 25, 26]. Nevertheless,
the noise will be introduced into the extracted local features due to occlusion
and inaccurate key point detection. Some works use the Graph Convolution Net-
work (GCN) technique to enhance the description of local features by setting
local features as the nodes of GCN [27–29]. In the GCN, information could be
transferred between nodes through edges, and the information of nodes can be
enhanced or supplemented. However, in the occluded regions, the features are
often unintelligible [9]. If all the local parts are considered to have the same
reliability for information transmission, it brings in more noise and is terrible for
extracting discriminative representations.

In most of graph-based video-based person ReID methods, the transfer met-
ric among nodes is determined by the affinity between feature pairs. This may
result in ignoring global contextual information from all other nodes and only
considering undirected dependency [14, 27, 28]. Some of them utilize more than
one graph to realize temporal and spatial dimension information extraction,
which increases the complexity of the method [28, 29, 14].

A novel Temporal Extension Adaptive Graph Convolution (TE-AGC) frame-
work is proposed for video-based person ReID in this manuscript. TE-AGC ex-
tracts global and local semantic features from multiple images as graph nodes.
Then, the TE-AGC learns the reliability of each local feature extracted from mul-
tiple images, encouraging high-reliability nodes to transfer more information to
low-reliability nodes, and inhibiting information passing of low-reliability nodes.
Further, TE-AGC considers the dependencies of body parts within a frame or
across different frames in both temporal dimension and spatial dimension using
only one single graph. This way, it could mine comprehensive and discrimina-
tive features from the video clip by performing the designed graph convolution.
The validity of the TE-AGC is revealed by the experiments on two benchmark
datasets, MARS and DukeMTMC-VideoReID.

The main contributions of this paper are as follows: (1) A novel Temporal
Extension Adaptive Graph Convolution (TE-AGC) framework for video-based
person ReID is proposed. (2) We learned the reliability of local features and adap-
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tively pass information from more meaningful nodes to less meaningful nodes.
(3) We mine the temporal and spatial dimension information of video clips with
one convolution graph.

2 Related Work

2.1 Image-based person ReID

There have been many works for image-based person ReID [3–9]. Benefit from
the continuous advance of deep learning technology, the rank-1 accuracy of most
image-based person ReID methods on the benchmark dataset is higher than that
of human beings [1]. With utilizing the local semantic features and attention
mechanisms [16, 30], the performance of person ReID is further improved. In
recent years, more researchers have paid attention to the occlusion problem of
ReID and achieved fruitful results [9, 15, 16].

2.2 Video-based person ReID

Video-based person ReID can extract richer spatial-temporal clues than image-
based person ReID and is expected for more accurate retrieval [10]. Some works
extract features for each image of the video clip then aggregate them using
temporal pooling or RNN [17–19]. To learn robust representation against pose
changes and occlusions, the local semantic features and attention mechanisms
are also be used in the video-based person ReID to improve the performance
[20–26, 15]. Different from the image-based person ReID, the time dimension is
added, and both spatial attention and temporal attention are used to mine the
information of a video clip.

2.3 Graph Convolution

Graphs are often used to model the relationship between different nodes. Graph
Convolution Network (GCN) simply utilizes the convolution operation of image
processing in graph structure data processing for the first time [31]. Great success
has been achieved in many computer vision tasks, like skeleton-based action
recognition [32], object detection [33] and person ReID [9, 27–29]. Some methods
have been proposed to use the GCN in person ReID. Some treat the image as
nodes of graph, ignoring the relationship between different body parts within or
across frames. In addition, some recent works model the temporal and spatial
relationships of nodes in two or more graphs. For example, the Spatial-Temporal
Graph Convolutional Network (STGCN) [28] constructs two graph convolution
branches. The spatial relation of human body and the temporal relation from
the adjacent frames are learned in two different graphs.
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3 Method

We aim to develop an efficient spatial-temporal representation for video-based
person ReID. To this end, the Temporal Extension Adaptive Graph Convolution
(TE-AGC) framework is proposed in this manuscript, as shown in Fig. 1. In gen-
eral, the whole frame contains two parts. One is to extract preliminary semantic
features, and the other is to obtain an improved discriminative representation of
a video clip.

Fig. 1. The overall architecture of the proposed TE-AGC. It includes a backbone net-
work, a spatial attention layer and a key-point detector to extract the global and
local semantic features. Moreover, it also includes a graph construction and graph
convolution layer and a feature fusion block to obtain discriminative spatial-temporal
representation for each video clip.

3.1 Semantic Feature Extraction

First, we perform preliminary semantic feature extraction. It has been demon-
strated that part features are effective for person ReID [1, 2]. Inspired by this
idea, we aim to extract both global and local semantic features in this module.
To better resist the viewpoint variation and misalignment, a key-point detector
is utilized to locate key points. Then we extract local features from different key
points. It should be noted that, although human key-point detection is a relative
mature technique, there still exist key point position errors and key point confi-
dence errors in some cases [9]. Thus, the module introduced in 3.2 is necessary
and will enhance the features.

Given a video clip, we randomly sample T frames. These randomly sampled
frames are denoted as {It}Tt=1 and t is the index of the frame. The backbone
network is used to generate the initial feature maps for each frame. Then we use
a spatial attention layer to enhance the spatial feature and suppress the interfer-
ence information. The spatial attention layer is implemented by a convolutional
layer followed by a sigmoid activation function. Then the initial feature maps are
weighted by the attention layer. The set of feature maps after spatial attention
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operation are denoted as F = {F t}Tt=1, where F t ∈ RC×H×W and H, W , C
denote the height, width and channel number respectively.

We use a key point detector to help extracting aligned local features. For
each frame, the number of extracted key point is K. The local and global se-
mantic features of each frame are computed as follows. For distinction, we denote
the features at this stage as V and denote the features output by the module
introduced in 3.2 as V

′
.

VL
t = {vtk}Kk=1 = {gGAP

(
F t

⊗
mt

k

)
}Kk=1 (1)

VG
t = gGAP

(
F t

)
(2)

where VL
t ∈ RK×Cdenotes the local features of the frame t, which include se-

mantic local features of K key points. vtk ∈ R1×C is the local feature around
kth key point of frame t. mt

k is derived from the heatmap of the kth key point
of frame t by normalizing original heatmap with a SoftMax function. gGAP (·)
refers to global average pooling operation.

⊗
is element by element multiplica-

tion operation. VG
t ∈ R1×C denotes the global feature of the frame t. Therefore,

the preliminary semantic of this video clip contains local feature {VL
t}Tt=1 and

global feature {VG
t}Tt=1.

3.2 Temporal extension adaptive graph convolution layer

After extracting each frame’s preliminary global and local features, we employ
advanced GCN to mine spatial-temporal representation from video frames.

A graph convolution can be operated as [31]:

O = ÂXW (3)

where Â is normalized version of the adjacent matrix A, and X is the feature
matrix which contains features of all nodes. W refers to parameters to be learned.
O is the output after graph convolution operation.

In our method, the preliminary global feature and local feature of each frame
within one video clip are treated as the graph nodes. For a video clip, the number
of nodes is N = T × (K + 1) including features of T frames, K local features
and 1 global feature per frame. The feature matrix X with the size of N ×C is
constructed by the concatenation of {VL

t}Tt=1 and {VG
t}Tt=1 in vertical direction.

The adjacent matrix A ∈ RN×N illustrates the topology of the graph. A(i, j)
represents the information propagation metric from node j to node i. When
A(i, j) equals to zero, no information transfers from node j to node i.

Most of the GCN-based person ReID methods obtain the A(i, j) by calcu-
lating the feature affinity between node j and node i. However, this calculation
method might introduce noise when some nodes are unreliable. Considering that,
we propose a Temporal Extension Adaptive Graph Convolution (TE-AGC) layer
to calculate the adjacent matrix A.
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Our method efficiently utilizes one single graph to transmit information in
both temporal and spatial dimensions. In addition to local features, we intro-
duce global features of each frame as graph nodes, considering complex spatial-
temporal dependencies of different body parts and the whole body within a
frame or across frames. Linkage modes between nodes are shown in fig. 2. They
include local features within single frame ( 1○ in fig. 2), local features and global
features within single frame ( 4○ in fig. 2), corresponding local features across
frames ( 2○ in fig. 2), non-corresponding local features across frames ( 3○ in fig.
2) and global features across frames ( 5○ in fig. 2). It should be noted that we
just illustrate the modes of connections and do not draw all the connections
in fig.2. The connections between different local features including both within
and across frames are defined by human skeleton. Information transfer will be
performed among key points in adjacent positions.

Fig. 2. Linkage modes among nodes.

After determining whether there is a connection relationship between each
node, our method delicately designs the information propagation metric. Inspired
by the assumption proposed in [9] that the meaningful local feature is more
similar to the global feature than the meaningless local feature, a method to
learn the reliability of local features and compute the value of A(i, j) is proposed.
Suppose node i is local feature of kth key point of frame t, the reliability of node
i, referred as Di is learned as follows:

Di = FC
(
BN

(
abs

(
vtk − VG

t
)))

(4)
where abs(·) and BN(·) are absolution and batch normalization. FC(·) is fully
connected layer mapping a vector with size 1 × C to a real number. The relia-
bilities of local features are normalized by a SoftMax operation.

If both node j and node i are local features and exist information transfer
(types 1○ 2○ 3○ in Fig. 2), A(i, j) is calculated as follow:

A(i, j) = ReLU(1 + α(Dj −Di))× α(Di +Dj) (5)
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where α is a hyperparameter larger than zero to balance the transfer metric
between global features and local features. Di and Dj are the reliability of node
i and node j calculated by (4). Obviously, if node j is more reliable than node i,
node j will transmit more information to node i. If node j is global feature and
node i is local feature and exist information transfer (type 4○ in Fig. 2), the
transfer metric is set as ReLU(1− β×Di), where β is another hyperparameter.
And the pass-through metrics between global feature and global feature (type
5○ in Fig. 2) is set as 1/(T − 1). The matrix A is normalized as Â by applying
L1 normalization operation to each row of A.

By (3), output feature O after the graph convolution can be obtained. For
stabilize training, we fuse O and the input features X as in the ResNet [34]. The
output of the TE-AGC layer is the improved feature V

′
.

V
′
= FC(X) +ReLU(O) (6)

where ReLU(·) is the activation function that if the input is greater than zero, it
remains unchanged; otherwise the output is zero. The V

′
contains improved local

features {V ′

L

t
}Tt=1 and improved global features {V ′

G

t
}Tt=1. The V

′

L

t
= {v′ t

k}Kk=1,
v

′ t

k is the improved local feature around kth key point of frame t.
With this adaptive method we proposed, the linkage among nodes is decided

by the input features. Nodes with high reliability will transfer more information
to nodes with low reliability. Therefore, the information can be transmitted more
effectively through graph convolution.

3.3 Model Optimizing

After obtaining the improved features and preliminary semantic features, we will
further incorporate the global and local representations. We employ a temporal
average pooling layer gTAP ({·}Tt=1) to generate the time average (TA) feature
vector

VG
TA = gTAP ({VG

t}Tt=1) (7)

V
′

G

TA
= gTAP ({V

′

G

t
}Tt=1) (8)

And we obtain the local and global combined TA feature vector by

VC
TA = gTAP ({

K∑
k=1

vtk}Tt=1) + VG
TA (9)

V
′

C

TA
= gTAP ({

K∑
k=1

v
′ t

k}Tt=1) + V
′

G

TA
(10)

The model is optimized by lose function. We utilized identification loss and
triplet loss for V

′

G

TA
, V

′

C

TA
, VG

TA and VC
TA. We combine the identification loss
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and triplet loss as the total loss with a weighted parameter λ to balance weights
of different kind of loss. We adopt triplet loss with hard mining strategy [35] and
identification loss with label smoothing regularization [36] to optimize the loss
function.

4 Experiments

4.1 Dataset and Implementation

Datasets. Two benchmarks of video-based person ReID datasets, MARS and
DukeMTMC-VideoReID, are utilized to evaluate the TE-AGC. MARS, the largest
video-based person ReID dataset, contains 17503 tracklets from 1261 identities
and 3248 distractor sequences. 625 identities are contained in training set and
636 identities are contained in test set. DukeMTMC-Video is derived from the
DukeMTMC dataset, with 4832 tracklets from 1812 identities. There are 408,
702, 702 identities for distraction, training and testing respectively.

Evaluation protocols. We adopt the mean average precision (mAP) and
the Cumulative Matching Characteristic (CMC) to evaluate the performance of
our method.

Implementation Details. We set T = 3, which means we randomly select
three frames as an input sample from a variable-length video clip. Each image
is resized to 256 × 128 pixels. Random horizontal flips and random erasing are
performed in the image augmentation process. We employ the ResNet-50 [34]
pre-trained on ImageNet [37] as the backbone network after removing the global
average pooling and full connected layers. We use HR-Net [38] pretrained on the
COCO dataset [39] as the human key points detector.In our method, 13 body
key-points are used. During the training period, the learning rate is initialized
as 3.5 × 10−4 and decayed by 5 after every 70 epochs. The optimizer is Adam
with weight decay 5× 10−4. The model is totally trained for 500 epochs. During
inference, the representation of a video clip to calculate the similar scores is the
V

′

C

TA
. It should be noted that, when we set T = 4 or more, the ReID performance

is very similar to T = 3. Considering the calculation cost, T = 3 is suitable for
our method. Therefore, the following experimental analysis is completed under
the setting of T = 3.

4.2 Comparison with state-of-the-arts

Table 1 makes a comparison between our method and state-of-the-art algorithms
on MARS and DukeMTMC-VideoReID datasets. Our method has achieved state-
of-the-art performance.

Results on MARS. Our method is compared with 12 state-of-the-art meth-
ods on MARS dataset. Among these methods, AGRL, STGCN and MGH are
three other graph-based methods. Compared with these graph-based methods,
our method achieves higher Rank-1, Rank-5 accuracy and mAP. There are two
main reasons for this improvement. One is our method considers the complex
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spatial-temporal relation among different body parts and whole body within a
frame or across frames. On the other hand, instead of using pair-wise feature
affinity, the information pass metrics we designed encourage reliable nodes to
pass more information to other modes.

Results on DukeMTMC-Video. Our method is compared with 11 state-
of-the-art methods on DukeMTMC-Video dataset. Our method has gotten 97.2%
rank-1 results and 96.3% mAP, which exceeds the vast majority of state-of-the-
art methods. The comparison verifies the effectiveness of our method.

Table 1. Performance comparison to the state-of-the-art methods on MARS and
DukeMTMC-VideoReID dataset.

Methods MARS DukeMTMC-VideoReID
Rank-1 Rank-5 mAp Rank-1 Rank-5 mAP

STA[20] 86.3 95.7 80.8 96.2 99.3 94.9
GLTR [40] 87.0 95.8 78.5 96.3 99.3 93.7

COSAM [23] 84.9 95.5 79.9 95.4 99.3 94.1
VRSTC [41] 88.5 96.5 82.3 95.0 99.1 93.5
RGSAT [42] 89.4 96.9 84.0 97.2 99.4 95.8
AGRL [27] 89.8 96.1 81.1 96.7 99.2 94.2

TCLNet [24] 89.8 - 85.1 96.9 - 96.2
STGCN [28] 90.0 96.4 83.7 97.3 99.3 95.7
MGH [29] 90.0 96.7 85.8 - - -
AP3D [43] 90.1 - 85.1 96.3 - 95.6
AFA [44] 90.2 96.6 82.9 97.2 99.4 95.4

BiCnet-TKS [13] 90.2 - 86.0 96.3 - 96.1
TE-AGC (ours) 90.7 97.5 85.8 97.2 99.4 96.3

4.3 Model Component Analysis

The architecture of our method has only one branch, which is both concise and
effective. Here the contribution of each part of TE-AGC is evaluated and results
on MARS dataset are reported.

Table 2 reports the experimental results of the ablation studies for TE-AGC.
The 1st line can be regarded as baseline result of our method. In the 1st line, for
each frame, we use the backbone network and key point detector to get global
and local features. Then we combine all features like (7) and (9). Compared
with 1st line, the 2nd line shows the result of adding the Spatial Attention (SA)
layer. In addition, the 3rd line adds GCN layer we designed but does not use the
spatial attention layer, which means only removing the spatial attention layer
compared with the entire architecture (the 4th line).

Comparing the 1st line with the 2nd line or comparing the 3rd line with the 4th
line, the effectiveness of the spatial attention can be directly proved. Though it is
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Table 2. Component analysis of the effectiveness of each component of TE-AGC on
MARS dataset.

Number Methods MARS
Rank-1 Rank-5 mAP

1 TE-AGC –GCN –SA 88.7 96.1 83.8
2 TE-AGC –GCN 89.0 96.5 84.1
3 TE-AGC –SA 90.3 96.9 85.3
4 TE-AGC 90.7 97.5 85.8

relatively simple, it still has a certain inhibitory effect on background noise. The
comparison of the 2nd & 4th lines and the comparison of the 1st & 3rd lines
show the effect of the graph convolution layer we designed. The information of
each node is effectively transferred and enhanced during the graph convolution.
Finally, the powerful spatio-temporal representation for the video is obtained.

5 Conclusion

In this paper, a novel Temporal Extension Adaptive Graph Convolution (TE-
AGC) framework is proposed for video-based person ReID. The TE-AGC could
mine features in spatial and temporal dimensions in one graph convolution op-
eration effectively. The TE-AGC utilizes a CNN backbone, a simple spatial at-
tention layer and a key-point detector to extract global and local features. A
delicate adaptive graph convolution module is designed to encourage meaning-
ful information transfer by dynamically learning the reliability of local features
from multiple frames. We combine the global feature and local features of each
frame with a future fusion module to obtain discriminative representations of
each video clip. The effectiveness of the TE-AGC method is verified by a large
number of experiments on two video datasets.
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