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Abstract. Digit datasets are widely used as compact, generalizable
benchmarks for novel computer vision models. However, modern deep
learning architectures have surpassed the human performance bench-
marks on existing digit datasets, given that these datasets contain digits
that have limited variability. In this paper, we introduce Caltech Foot-
ball Numbers (CaltechFN), an image dataset of highly variable Ameri-
can football digits that aims to serve as a more difficult state-of-the-art
benchmark for classification and detection tasks. Currently, CaltechFN
contains 61,728 images with 264,572 labeled digits. Given the many dif-
ferent ways that digits on American football jerseys can be distorted
and partially occluded in a live-action capture, we find that in com-
parison to humans, current computer vision models struggle to classify
and detect the digits in our dataset. By comparing the performance of
the latest task-specific models on CaltechFN and on an existing digit
dataset, we show that our dataset indeed presents a far more difficult
set of digits and that models trained on it still demonstrate high cross-
dataset generalization. We also provide human performance benchmarks
for our dataset to demonstrate the current gap between the abilities of
humans and computers in the tasks of classifying and detecting the dig-
its in our dataset. Finally, we describe two real-world applications that
can be advanced using our dataset. CaltechFN is publicly available at
https://data.caltech.edu/records/33qmq-a2n15, and all benchmark
code is available at https://github.com/patrickqrim/CaltechFN.

1 Introduction

The task of classifying digits was one of the first computer vision tasks suc-
cessfully “solved” by deep learning architectures. Released in 1998, the MNIST
dataset [1] serves as a benchmark for model performance in the task of classifying
digits. However, deep learning models have been able to achieve human levels
of performance in the task of classifying the digits in the MNIST dataset [2–5].
Due to the standardized nature of the handwritten digits in MNIST, there is low
variability between the digits, which makes it easy for modern computer vision
architectures to learn the characteristic features of each digit [6, 7].
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The Street View House Numbers (SVHN) dataset [8] consists of digits from
house numbers obtained from Google Street View images, which pose a more
difficult challenge than MNIST. Due to the natural settings and diversity in the
designs of the house numbers, there is a far higher variability between the digits
in SVHN than in MNIST. Thus, when SVHN was published in 2011, there was
initially a large gap between human performance and model performance in the
task of classifying its digits [9]. Because of this disparity, SVHN began to serve
as a more difficult benchmark for novel image classification and object detection
models [10,11]. However, newer models have since been able to achieve a classifi-
cation accuracy on SVHN exceeding 98% [12–15], which is the published human
performance benchmark. Some recent models have even achieved an accuracy
exceeding 99% [16,17]. With minimal room left for improvement in performance
on SVHN, there is a need for a more difficult digit dataset to benchmark the
progress of future classification and detection models.

In this paper, we present Caltech Football Numbers (CaltechFN), a new
benchmark dataset of digits from American football jerseys. Samples of the dig-
its in our dataset are displayed in Fig. 1. We demonstrate that the latest image
classification and object detection models are not able to achieve human per-
formance on our dataset. This performance gap can be explained by the signifi-
cantly increased variability of CaltechFN compared to current benchmark digit
datasets. Due to the nature of American football jerseys, many of the digits in
the dataset are wrinkled, stretched, twisted, blurred, unevenly illuminated, or
otherwise distorted [18–21]. Sample images containing distorted digits are dis-
played in Fig. 2(a). These possibilities introduce a substantial number of ways
that each digit can differ in appearance from the other digits in its class. We
demonstrate that even the latest models struggle to learn the characteristic fea-
tures of each digit when trained on such highly variable digits. This is likely due
to the scarcity of digits that are distorted and occluded in the same way. As
improved few-shot learning methods are developed, we expect an improvement
in model performance on our dataset.

Furthermore, due to the nature of American football games, many images of
digits on jerseys in live-action will be partially occluded [18–20]. For example,
another player or the ball may be present between the camera and the subject
player, or the player may be partially turned away from the camera such that
parts of digits are not visible. Sample images containing partially occluded digits
are displayed in Fig. 2(b). CaltechFN contains many such images of digits that
are partially occluded, yet identifiable by human beings. This can be explained
by recent neuroscience studies that have demonstrated the capability of the hu-
man brain to “fill in” visual gaps [22–25]. On the other hand, computer vision
models struggle to fill in these visual gaps [26, 27] since they are often unique
and not represented in the training set. In other words, there are a large number
of unique ways in which a certain digit may be partially occluded. Compounding
this with the number of ways that a digit can be distorted, it is difficult for mod-
els trained on our dataset to learn the characteristic features of each digit [28].
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Fig. 1: Samples of cropped digits from the CaltechFN dataset that are distorted
(e.g. wrinkled and stretched) and partially occluded.
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The main contributions of this paper are as follows:

1. We present CaltechFN, a dataset of distorted and partially occluded digits.
The CaltechFN dataset poses a difficult challenge for even the latest com-
puter vision models due to its high intra-class variability. For this reason,
CaltechFN can serve as a state-of-the-art benchmark for future image classi-
fication, object detection, and weakly supervised object detection (WSOD)
models.

2. We perform experiments to measure cross-dataset model performance bench-
marks on the CaltechFN and SVHN datasets. The results illustrate that Cal-
techFN is indeed a more difficult benchmark than SVHN and that models
trained on CaltechFN demonstrate high cross-dataset generalization.

3. We record human performance benchmarks on the CaltechFN dataset using
experiments with human volunteers. The existing gap between the best cur-
rent model performance and our human performance benchmark will hope-
fully catalyze innovations in the construction of computer vision models.

This paper is structured as follows: Section 2 compares and contrasts Cal-
techFN with related datasets. The properties and goals of our dataset are in-
troduced in Section 3. This section also describes the process undertaken to
construct the dataset. Section 4 details and compares the performance of var-
ious image classification, object detection, and WSOD models on our dataset.
We then provide human performance benchmarks on our dataset in Section 5.
In Section 6, we present examples of real-world tasks that can be better solved
by models trained on our dataset. In Section 7, we discuss future directions that
can be taken to utilize the richness of information in the images in our dataset.

2 Related Work

Digit Datasets. Digit datasets are advantageous in their simplicity and their
ease of use, containing a small number of classes and requiring little prepro-
cessing and formatting to begin the training process. While ImageNet [29], MS-
COCO [30], and PascalVOC [31] are the most popular datasets for image clas-
sification and object detection, they lack the compactness and the simplicity of
digit datasets due to their large size and wide variety of classes. There are sev-
eral popular digit datasets available, but many of the digits in these datasets are
handwritten. MNIST [1] was the first prominent digit dataset, but the standard-
ization of the digits limits variability. The ARDIS dataset [32] contains hand-
written digits from old Swedish church records, which introduces some variability
due to age-induced weathering. However, the variability is still limited by the
standardized nature of handwritten digits. There do exist datasets that instead
contain digits in natural settings. Roughly 10% of the Chars74k dataset [33] is
from real-life, outdoor images. However, Chars74k also contains non-digit char-
acters, which limits the number of digits it contains. SVHN [8] is the primary
dataset consisting exclusively of digits in real-world settings. However, the images
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in SVHN have few distortions besides natural blur, and close to no occlusions
since they are house numbers intended to be visible from the street. Meanwhile,
CaltechFN consists of many examples of distorted and partially occluded dig-
its, which constitutes a more difficult set of digits than any existing digit dataset.

Datasets with Distorted Objects. Distortions in many popular image datasets
are limited in their complexity. For instance, the SmartDoc-QA dataset [34]
contains images of documents distorted by blur, perspective, and illumination
effects. All of these distortions fall under the same general domain and do not
cover the wide variety of distortions in the real world. The dataset of soccer
jersey numbers by Gerke, Müller, and Schäfer [35] consists of images taken from
soccer videos with image-level annotations of jersey numbers. The distortions in
these images are similar to the ones found in CaltechFN since they were also
captured from sports settings. However, unlike CaltechFN, this dataset does not
contain bounding box annotations, meaning that the dataset cannot be used to
benchmark object detection tasks. Furthermore, there is more physical contact
between players in American football than in soccer, meaning that there are
more distorted digits in CaltechFN than in the soccer dataset, which can be
empirically confirmed when observing the two datasets.

Datasets with Partially Occluded Objects. There are also many existing
datasets with partially occluded objects. However, most of these datasets are not
focused on digits, but on a larger range of objects. For example, the Occluded
REID [36] and the Caltech Occluded Faces in the Wild [37] datasets present the
challenge of identifying humans and faces, respectively, when partially occluded
by other objects. Similarly, the Pascal3D+ dataset [38] augments images from
the PascalVOC and ImageNet datasets with 3D annotations, partially occluding
the target objects. All of these datasets lack the simplicity and convenience
of digit datasets. Chars74k does contain some digits and characters that are
partially occluded. However, unlike CaltechFN, the Chars74k dataset does not
provide bounding boxes and thus cannot be used to benchmark object detection
tasks.

3 Caltech Football Numbers (CaltechFN) Dataset

3.1 Dataset Construction

Image Collection. The first step of the data construction process was to collect
candidate images. In order to construct a representative and unbiased dataset,
we chose to sample an equal number of images of each jersey number in American
football, which ranges from 1 to 99. Since each digit from 0 to 9 is roughly equally
represented in this range, we sampled uniformly across each jersey number. This
is to ensure that models trained on our dataset do not overfit to any over-
represented digits [39].

We collected our candidate images by querying the Google Image Search
database. Using the query “Team Name” + “Number”, we collected 50 images
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Fig. 2: Samples of full images from the CaltechFN dataset that contain la-
beled bounding boxes around digits that are (a) distorted (e.g. wrinkled and
stretched), and (b) partially occluded.

for each combination of the 32 teams in the National Football League and the
99 jersey numbers, for a total of 1600 images for each number and a grand total
of 158,400 images. We chose this query because it seemed to be neither too gen-
eral nor too specific: queries that were too general returned too many irrelevant
images, while queries that were too specific did not return a sufficient number
of relevant images.

Image Filtering. We then completed a filtering process to remove unwanted
and duplicate images. First, we made two full passes through the set of candi-
date images to remove images that did not contain any digits. Almost half of
the candidate images were removed in this step. Then, we removed any images
where the digits contained were distorted or occluded to the extent that we
were not able to identify them. We first made another two full passes through
the set of candidate images to identify and mark images that contained digits
that were not immediately identifiable. We then carefully sorted through each of
these marked images, only keeping those that contained at least one identifiable
digit. Finally, we used a deduplication tool [40] to identify and remove duplicate
images. The result of this cleaning process is our current set of 61,728 images
and 264,572 labeled digits.

Image Annotation. As done by many previous studies [41], we utilized the
Amazon Mechanical Turk (AMT) platform [42] to label each individual digit in
each of the images. For each digit, including those that were partially occluded,
partially cut off, or rotated, AMT workers were asked to draw and label a max-
imally tight bounding box that contained every visible pixel of the digit. We
then worked through the results and fixed any errors; specifically, we labeled
identifiable digits that were not already labeled, removed erroneous boxes, and
corrected any incorrect labels.
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Fig. 3: Distribution of digits in (a) the train set, (b) the test set, and (c) the
entire dataset.
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3.2 Properties

Through CaltechFN, we aim to provide an extensive set of digits with high
variability to provide a new goal for Computer Vision models to work towards.
To that end, the dataset includes a highly variable set of digits, with many of
them being distorted and partially occluded in unique ways. For instance, some
digits are partially blocked by a football, while other digits are twisted and
wrinkled due to the jersey being pulled on. We also include some easier images,
such as stationary images of unobstructed jerseys. We hope that the variability
of digits presented in the dataset will challenge researchers to design innovations
that will allow models to identify similarities between digits of the same class.

We will now provide more specific details about the CaltechFN dataset. As
described in Section 3.1.2, the current version of our dataset contains a total
of 61,728 images and 264,572 labeled digits. As shown in Fig. 3, our dataset
contains a roughly uniform number of images from each of the ten digit classes.
As mentioned in Section 3.1.1, this is necessary to ensure that models trained
on our dataset do not overfit to any over-represented digits.

We publish our dataset in the “Full Image” and “Cropped Digits” formats:

– The “Full Image” format includes all images in their original resolutions as
obtained from the image collection process. Each image is accompanied by
bounding box annotations for each identifiable digit that it contains. The
mean and standard deviation of the heights and widths of the full images
are 181.571±15.452 pixels and 234.692±54.365 pixels respectively. Samples
of full images with the bounding boxes drawn are displayed in Fig. 2.

– The “Cropped Digits” format contains character-level images of each digit.
These images were created by cropping and labeling each region of the full
images contained by a bounding box. The mean and standard deviation of
the heights and widths of the cropped digits are 32.360±18.042 pixels and
21.334±9.375 pixels respectively. Samples of cropped digits are displayed in
Fig. 1.

For both formats of our dataset, we provide a train set (“CaltechFN-train”)
and a test set (“CaltechFN-test”). This train-test split was created using a ran-
dom, uniform 80-20 split. As seen in Fig. 3, the distribution of digits in the
train set and test set are similar to the overall distribution of digits across the
entire dataset. The details of the train-test split for both the “Full Image” and
“Cropped Digits” formats are as follows:

– “Full Image”: train set contains 49,383 images (80.0% of total), test set con-
tains 12,345 images (20.0% of total).

– “Cropped Digits”: train set contains 211,611 digits (80.0% of total), test set
contains 52,911 digits (20.0% of total).
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Table 1: Model performance when (A) trained on CaltechFN-train, tested on
CaltechFN-test; (B) trained on CaltechFN-train, tested on SVHN-test; (C)
trained on SVHN-train, tested on CaltechFN-test; (D) trained on SVHN-train,
tested on SVHN-test. Image classification models are evaluated using classifica-
tion accuracy. Object detection and WSOD models are evaluated using mAP.

Image Classification
Model (A) (B) (C) (D)

MobileNet (CVPR ’18) [43] 86.0±0.6 93.1±0.5 76.0±0.6 98.2±0.5
DenseNet121 (CVPR ’17) [15] 87.9±0.4 95.0±0.3 77.9±0.3 98.6 ±0.4

ResNet50 (CVPR ’16) [44] 86.9±0.4 94.2±0.6 77.1±0.5 98.3±0.4

Object Detection
Model (A) (B) (C) (D)

YOLOv5 (’21) [45] 54.4±0.5 61.2±0.5 37.5±0.9 67.9±0.4
RetinaNet (ICCV ’17) [46] 52.7±0.8 57.8±0.7 30.0±1.4 65.2±0.7

SSD (ECCV ’16) [47] 54.6±0.4 61.1±0.2 38.6±1.0 67.2±0.4
Faster-RCNN (NIPS ’15) [48] 57.4±0.3 60.9±0.5 38.8±0.6 68.5±0.3

Weakly Supervised Object Detection (WSOD)
Model (A) (B) (C) (D)

Wetectron (CVPR ’20) [49] 29.5±0.6 37.5±0.5 20.7±1.8 42.6±0.3
C-MIL (CVPR ’19) [50] 26.3±1.4 36.0±1.2 17.2±1.0 39.4±0.8
WSOD2 (ICCV ’19) [51] 21.1±0.4 27.0±0.8 14.8±1.8 30.9±0.3
PCL (CVPR ’17) [52] 27.1±0.9 34.5±0.6 16.9±1.0 37.3±1.1

4 Model Performance

In the following experiments, we will compare the performance on CaltechFN
and SVHN of some of the latest models built for the tasks of image classifi-
cation, object detection, and weakly supervised object detection. We compare
performance on our dataset to performance on SVHN because it is the most
similar existing digit dataset, as we explained in Section 2. We will show that
CaltechFN is a significantly more difficult dataset than SVHN, while also show-
ing that models trained on CaltechFN perform at least as well as models trained
on SVHN. For each model, we will present results for the following four experi-
ments, labeled as follows:

(A) Training on CaltechFN-train, testing on CaltechFN-test,
(B) Training on CaltechFN-train, testing on SVHN-test,
(C) Training on SVHN-train, testing on CaltechFN-test,
(D) Training on SVHN-train, testing on SVHN-test.

The experimental results are presented in Table 1. We note that the results
labeled (A) serve as benchmark performance scores for CaltechFN in the three
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tasks we detailed. The evaluation metric for the image classification results is
classification accuracy, while the evaluation metric for the object detection and
WSOD results is mAP. All experimental details including the hyperparameter
search effort, the compute resources used, and a description of the evaluation
metrics are discussed at length in the Supplementary Material.

We now explain the relevance of the experimental results:

1. We demonstrate the comparative difficulty of CaltechFN. When
trained on CaltechFN, models perform worse on CaltechFN (A) than on
SVHN (B). The same models trained on SVHN also perform worse on Cal-
techFN (C) than on SVHN (D). Regardless of which dataset is used as the
training set, models perform worse on CaltechFN than on SVHN.

2. We demonstrate that models trained on CaltechFN demonstrate
high cross-dataset generalization. Models perform worse on CaltechFN
when training on SVHN (C) than when training on CaltechFN (A) itself,
but the performance of the same models on SVHN does not significantly
drop when trained on CaltechFN (B) instead of on SVHN (D). This shows
that computer vision models are able to learn robust, generalizable features
by training on CaltechFN.

5 Human Performance Benchmark

To demonstrate the potential for improvement in current computer vision ar-
chitectures, we provide human performance benchmarks on our dataset in the
same classification and detection tasks performed by computer vision models in
Section 3.

To measure human performance in the task of classifying the cropped digits
in CaltechFN, we asked five human volunteers to label a subset of 15,000 cropped
digits (“All Samples”). We calculate mean human performance by computing the
accuracies of the volunteer-generated labels.

To measure human performance in the task of detecting digits in the full
images in CaltechFN, we asked the same five human volunteers to draw bounding
boxes on a subset of 5,000 images (“All Samples”). We calculate mean human
performance using the same mAP metric used for the object detection models
in Section 3.

Furthermore, we calculate the human performance in both tasks for only the
subset of “Difficult Samples” that even the best models in Section 4 were unable
to classify/detect. The results, which we provide as benchmarks for human per-
formance in the tasks of image classification and object detection on our dataset,
are presented in Table 2.

We see that humans are able to achieve high levels of performance, even on
the samples that the best models were unable to classify/detect. This clear dis-
parity between human performance and the best model performances in both
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Table 2: Human performance on the CaltechFN dataset. Image classification
performance is evaluated using classification accuracy, while object detection
performance is evaluated using mAP.

Human Performance Benchmarks
Task All Samples Difficult Samples

Image Classification 99.1±0.8 97.8±2.3
Object Detection 87.2±4.5 83.0±5.9

tasks demonstrates that there potentially exist certain techniques not yet learned
by models that humans use to identify difficult digits. Evidently, there is still a
need for innovations in the construction of computer vision models for computers
to be able to achieve human levels of performance in the aforementioned tasks.

However, it is clear that even humans find it difficult to identify every digit
in our dataset. Even though the digits that are included in our dataset are
the ones that we approved as identifiable, it is not necessarily true that other
humans will also be able to identify each of these digits. This may be due to
a bias stemming from the fact that we collected the images, or simply due to
variability in performance across different humans. Ultimately, this leaves open
the possibility that significant advancements in computer vision techniques may
result in models being able to achieve even higher performance on classification
and detection tasks on our dataset than humans.

Fig. 4 provides a visual representation of Tables 1 and 2. The compara-
tive difficulty of CaltechFN and the high cross-dataset generalization of models
trained on CaltechFN, as well as the gap between human performance and model
performance on CaltechFN, are clearly illustrated.

6 Applications of CaltechFN

We will now present two potential real-world applications that involve detecting
and classifying digits. Our dataset provides a rich source of difficult digits that
are distorted and partially occluded in the same manner that they are in these
two real-world settings. We will explain the benefits of using the images in our
dataset to train models that can perform these real-world tasks.

6.1 Player Detection and Tracking in Sports

Currently, coaches in sports must watch footage of a past game to chart the per-
sonnel (players on the field) over the duration of the game, which is an important
task in sports analytics [19]. Computer vision models have thus far struggled to
outperform humans at this task due to the distortions and occlusions of jersey
numbers, which are the primary identifying features of players [18]. Our dataset
can be used to train a model that can identify players in game footage using
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Fig. 4: Visual representation of Tables 1 and 2 for (a) image classification; (b)
object detection; and (c) weakly supervised object detection. (A), (B), (C), and
(D) are as defined in Section 4. The models for each subplot are, in the color
order displayed, as follows: (a) MobileNet, DenseNet, ResNet; (b) YOLOv5,
RetinaNet, SSD, Faster-RCNN; (c) Wetectron, C-MIL, WSOD2, PCL.

their jersey numbers even under such conditions, given that it includes many
training examples of distorted and partially occluded jersey numbers. While a
potentially negative societal impact of such a model would be that this would
relieve coaches of this responsibility, coaches could instead focus on analyzing
the personnel information.

Another useful application of a model trained on our dataset is that high
school and college sports coaches may be able to track the movements of their
players using game footage. While many professional sports teams use microchips
to track the movements of their players, high school and college teams often do
not have access to this level of technology. Our model would be able to locate
players using their jersey numbers at each frame and be able to chart their
movements, which is useful information that enables complex sports analysis.

6.2 Self-Driving Cars

In order to stay within speed limits, self-driving cars rely on internal vision
systems to detect and read speed limits on the road [53, 54], which are most
often printed on signs or painted directly onto the road. The consequences of a
self-driving car being unable to read the speed limit may be dire, especially in
an area where the speed limit warnings are few and far between.

Some speed limit signs may be old and worn-out, causing the digits to be
faded or otherwise distorted, while speed limits painted on the road may be
chipped and eroded. A self-driving car may not detect such speed limit postings,
especially since it may be traveling past them at high speeds. By training its
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Fig. 5: Sample detections on worn-out and partially occluded speed limit postings
using Faster-RCNN trained on CaltechFN.

vision systems on our dataset, which contains many examples of distorted dig-
its, a self-driving car may be better equipped to read speed limits even under
imperfect conditions. In other cases, speed limit signs and speed limits painted
on the road may be partially occluded by other cars, pedestrians, or other obsta-
cles. A self-driving car trained on our dataset, which contains many examples of
partially occluded digits, would be better able to read such speed limit postings.
To demonstrate the viability of this application, we applied the Faster-RCNN
model mentioned in Section 4 to two sample images containing distorted (worn
out) and partially occluded speed limit postings. The bounding box predictions
are shown in Fig. 5.

7 Discussion and Future Work

In this paper, we have introduced CaltechFN, a new dataset containing digits
found on American football jerseys. This dataset is novel in its variability: each
digit is distorted or partially occluded in a unique way such that current models
have difficulty learning the representative features of each digit class. We queried
the Google Image Search database to collect our images, deleted images with
no identifiable digits, then utilized Amazon Mechanical Turk to create annota-
tions for the digits in each image. Through our experiments with various image
classification, object detection, and WSOD models, we have demonstrated that
CaltechFN is indeed a more difficult benchmark than SVHN and that models
trained on CaltechFN demonstrate high cross-dataset generalization. Further-
more, we recorded human performance benchmarks on the CaltechFN dataset
using experiments with human volunteers. In doing so, we illustrated the exist-
ing gap between model performance and human performance on our dataset.
With this dataset, we aim to introduce a new state-of-the-art benchmark that
will be used to foster the development of novel computer vision models. We hope
that innovations in computer vision research will allow future models to achieve
human levels of performance on our dataset.

We believe that models that perform well on our dataset will be better
equipped to perform real-world tasks. Two such real-world applications of our
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dataset were described in Section 5. Models trained on our dataset could be used
to automate the process of charting the personnel on the field at a given moment
in a game. Also, self-driving cars can train its vision systems on our dataset to
be better equipped to read speed limit postings under imperfect conditions.

7.1 Further Labeling

The images in the CaltechFN dataset contain rich information yet to be anno-
tated, beyond the existing digit annotations that are the focus of this paper.
Thus, we believe that the primary future direction of the CaltechFN dataset is
to expand upon the existing annotations for the following applications:

Scene Recognition. Scene recognition refers to the computer vision task of
identifying the context of a scene within an image. There is extensive research
being conducted on the development of models to improve performance in this
task [55–57]. While there do exist several large datasets for scene recognition,
the task remains challenging and largely unsolved. These challenges have been
attributed to class overlaps and high variance within classes [58]. Class overlaps
occur when there are several classes that are not sufficiently distinct from each
other, while high variance within classes means that classes have a wide vari-
ety of scenes attached to them. We believe that the unexploited qualities of our
dataset may be able to address these challenges and improve model performance
in the task of scene recognition. Within American football, each scene has a dis-
tinctive action being performed: tackling, throwing, catching, running, kicking,
and so on. There is very little ambiguity between which of these actions is being
performed in which scene. This lack of variance thus addresses the challenge of
having class overlap—no two scene classes are the same and models should be
better able to distinguish between the scene classes in this dataset.

Instance Segmentation. Another commonly studied computer vision task is
that of instance segmentation [59–61]. This task is similar to object detection,
with the difference being that the output consists of the set of pixels contained
within the object rather than a rectangular box that bounds the object. Each
object in an image segmentation dataset is annotated with its exact pixel-level
boundary, rather than a simple rectangular bounding box. The images in our
dataset contain many distinct objects that can be delineated in this way, in-
cluding players, jerseys, helmets, and balls. We see that many of these objects
are shaped in the form of some part of a human being. Thus, by adding pixel-
level boundary annotations for these objects, our dataset could be used as a
benchmark for the advancement of human detection and tracking techniques.
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