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Abstract. Aerial image segmentation is an essential problem for land
management which can be used for change detection and policy planning.
However, traditional semantic segmentation methods focus on single-
perspective images in road scenes, while aerial images are top-down views
and objects are of a small size. Existing aerial segmentation methods
tend to modify the network architectures proposed for traditional se-
mantic segmentation problems, yet to the best of our knowledge, none of
them focus on the noisy information present in the aerial images. In this
work, we conduct an investigation on the effectiveness of each channels
of the aerial image on the segmentation performance. Then, we propose
a disentangle learning method to investigate the differences and similar-
ities between channels and images, so that potential noisy information
can be removed for higher segmentation accuracy.

Keywords: Aerial image segmentation · Disentangle learning · Seman-
tic segmentation.

1 Introduction

In the event of a large-scale disaster such as an earthquake or tsunami, it is
necessary to quickly obtain information on a wide area in order to secure safe
evacuation and rescue routes and to consider reconstruction measures. Aerial
image segmentation is one of potential solutions. The result from aerial image
segmentation can also be used to adjust governmental policy for subsidy, and
to utilize the given resources for land management. In the past, this task was
done manually and laboriously so it could only be done for a small number
of photographs, which is not enough to capture the changes across large areas
[5]. Moreover, such changes can be dramatic over time. Therefore, it is highly
desirable to develop an automatic solution for the task.

A similar task known as semantic segmentation inputs an image and outputs
a semantic segmentation map which indicates the class of an arbitrary pixel in
the input image. For this task, various methods have been proposed using deep
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learning. Among them, CNN [13, 6, 12] has been actively applied in research and
has shown high performance. However, they heavily rely on manual annotation
because they are fully supervised [3, 1], yet remote-sensing data is not rich in
training data, and it is not clear whether “deeper” learning is possible with a
limited number of training samples.

Fig. 1. U-Net results when trained on different channels show different effectiveness
on different classes. The Green channel outperforms in the Woodland class (light gray)
while the Blue channel outperforms in the Water class (white).

Semantic segmentation of low-resolution images in aerial photography is a
challenging task because their objects are tiny and observed from a top-down
faraway viewpoint, which is entirely different compared to the traditional se-
mantic segmentation task. Many aerial segmentation methods are based on net-
work architectures proposed for the mainstream semantic segmentation task.
Boguszewski et al. [2] employs DeepLabv3+ with the backbone being modified
Xception71 and Dense Prediction Cell (DPC) for aerial segmentation. Khalel et
al. [8] proposed 2-level U-Nets with data augmentation to refine the segmenta-
tion result on aerial images. Li et al. [9] proposed to add a group of cascaded
convolution to U-Net to enhance the receptive field.

However, aerial images are generally captured from high altitude and avail-
able in low resolution, hence their illumination information is sensitive to noise.
The situation is worsen with the presence of dense objects. Therefore, in order
to achieve accurate segmentation and classification of aerial photographs, it is
necessary to extract the essential semantic content in the images.

Disentangle learning indicates methods which allows encoding the input into
separated features belonging to predefined sub-spaces. UNIT [11] and MUNIT
[7] are popular unsupervised disentangle learning methods for image-to-image
translation task, which can be deemed as the general task of many computer
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vision problems such as segmentation. They encode the image into a content code
and a style code. Content code is the common feature that can be shared between
2 domains, e.g. the same pose shared by a cat image and a tiger image. Style
code is the encoded distribution which gives the variant tastes to the content
code and it cannot be shared between 2 domains, e.g. the difference in skin color
and texture between cat and tiger images. However, UNIT only allows one-
to-one translation while MUNIT allows one-to-many translation with random
style codes. Inspired by this technique, we propose the content consistency loss
to enforce the content code of different channels of the same image to be the
same and style consistency loss to enforce the style code of the same channel of
different images to be the same.

In this work, we conducted segmentation on each channel respectively and
found that each channel has different segmentation effectiveness on objects as
shown in Figure 1. It is intuitively to think that different channels of the same
image share the same content code, which is essential for aerial image segmen-
tation. We also come up with a hypothesis that the same channels of different
images share the same style code. The style code, which may reflect noise or
specific illumination characteristic in channels, should not contribute to the seg-
mentation result and has adverse effect on segmentation. Therefore, the content
code should contain all the essential information needed for the segmentation
task.

In our framework, there are 2 encoders and 3 generators. Each encoder and
their corresponding generator is corresponding to an image channel. Taking the
green channel as an example, the green channel encodes the green channel image
into content code and style code, and the generator will generate back to the
green channel image based on these two codes. We then define a reconstruction
loss between two green channel images. The content consistency loss is added to
ensure the content codes from green channel encoder and blue channel encoder
to be the same for green channel images and blue channel images of the same
image. The style consistency loss is also employed to ensure the style codes of
the same channel is the same across different images. Finally, we use the content
code of the two channels as the input to the segmentation generator followed
with a semantic loss. The proposed method is evaluated on LandCover.ai dataset
[2].

To summarize, our contribution is two-fold:

– We show that different channels have different focuses on different segmen-
tation classes.

– We propose a disentangle learning framework that automatically remove
the noisy information present in aerial images by mining the differences
between channels of the same image and similarities of the same channel
across different images.

The paper is organized as follows: Section 3 presents our proposed frame-
work, section 4 shows the experimental results and detailed discussion, then our
work is concluded with section 5.
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2 Related work

2.1 Traditional semantic segmentation

Semantic segmentation task inputs an image and outputs a semantic segmen-
tation map which indicates the class of an arbitrary pixel in the input image.
However, it does not tell if those pixels belong to different instances. Tradi-
tional semantic segmentation focus on a road scene dataset such as Cityscapes
[4], where big objects are generally available. DeepLabv3+ [6] proposes to use
atrous separable convolution for the encoder. U-net [15] proposes skips which
connect low-level features and high-level features.

On the other hand, objects in aerial images are captured from top-down
views and in a very tiny form. Therefore, aerial segmentation presents challenges
demanding approaches different from traditional semantic segmentation.

2.2 Aerial segmentation

Many aerial segmentation methods are based on network architecture proposed
for the mainstream semantic segmentation task. A. Boguszewski et al. [2] em-
ploys DeepLabv3+ with the backbone being modified Xception71 and Dense
Prediction Cell (DPC) for aerial segmentation. Khalel et al. [8] proposed 2-
levels U-Nets with data augmentation to refine the segmentation result on aerial
images. Li et al. [9] proposed to add a group of cascaded convolution to U-net to
enhance the receptive field. However, none of them really focus on investigating
the input aerial images for noise removal purpose.

We opt for U-net, which has a similar network architecture to FPN [10] for
small object detection. The skip connections enhance semantic level of lower-level
features and reduce information distortion at the input of high-level features. We
do not employ FPN [10] directly as the size of the objects in the aerial images
is already very small and that size does not vary much.

2.3 Disentangle learning

Disentangle learning indicates methods which allows encoding the input into
separate features belonging to predefined sub-spaces. UNIT [11] and MUNIT
[7] are popular unsupervised disentangle learning methods for image-to-image
translation task, which can be deemed as the general task of many computer
vision problems such as segmentation. They encode the image into two content
code and style code. Content code is the common feature can be shared between 2
domains, e.g. cats and tigers may share the same pose. Style code is the encoded
distribution which gives the variant tastes to the content code and it cannot
be shared between 2 domains, e.g. skin colors and patterns between cats and
tigers are not the same. However, UNIT only allows one-to-one translation while
MUNIT allows one-to-many translation with random style codes.

Yet, due to their unsupervised nature, none of them can utilize the advantage
of doing disentangle learning on separate channels of the same image: Given an
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RGB image, we know for sure that their content code must be the same. We also
take our constraint hypothesis further, the style code of an interested channel,
e.g. green channel, should be the same across different images, which is currently
not endorsed by any of the existing methods.

FCN+MLP [14] up-samples the encoded features of each layers in Base FCN
and then combine them to yield the final prediction. Khalel et al. [8] proposed
2-levels U-Nets with data augmentation.

3 Proposed method

3.1 Framework

Fig. 2. (a) Style consistency loss

Let xG, xB be the G, B channels of an input image x. We exclude the
R-channel from our framework as it is discovered to contain a lot of noisy infor-
mation in Section 4.2.

We opt for U-net, which has a similar network architecture to FPN [10] for
small object detection, as the network architecture of our encoders and gener-
ators. The skip connections enhance semantic level of lower-level features and
reduce information distortion at the input of high-level features. We do not em-
ploy FPN [10] directly as the size of the objects in the aerial images is already
very small and that size does not vary much.

As shown in Figure 3, our network consists of two encoders and three gen-
erators. The two encoders are G-channel and B-channel encoder; the three gen-
erators are G-channel generator, B-channel generator, and segmentation map
generator. Let EG be the G-channel encoder, EG(xG) yields a 256-channel fea-
ture map, whose 56 first channels act as the style code sxG

and 200 remaining
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Fig. 3. (b) Content consistency loss and channel.
An overview of our proposed framework described with fig.(a) and (b). We employ
U-net network architecture for our encoders E and generators G. Our network also
uses a semantic segmentation loss, which is not shown for the sake of brevity.

channels act as the content code cxG
as shown in Figure 3. The generator

GG(cxG
, sxG

) reconstruct the G-channel input while the generator GS(cxG
) pre-

dicts the semantic segmentation map.
Similarly, EB(xB) yields the style code sxG

and the content code cxB
. We

enforce the content code of G-channel cxG
and B-channel cxB

of the same image
to be the same by the content consistency loss. This constraint is enforced further
by training GS(cxG

) and GS(cxB
) to predict the same semantic segmentation

map using the same network parameters GS .
We argue that the style code of the same channel should be the same across

different images, hence, while the style code is important for the channel recon-
struction task, it should not contain any information useful for the segmentation
task. Therefore, along with the style consistency loss between different images,
the reconstruction generators GG and GB input the style code but the semantic
segmentation map generator GS does not.

3.2 Channel reconstruction loss

Let Ei and Gi be the i-channel encoder and i-channel reconstruction generator.
Channel reconstruction loss enforces Gi to reconstruct the exact same channel
which is the input of Ei.

Lr(x) =
∑

i∈{G,B}

∥xi −Gi(Ei(xi))∥1 (1)

3.3 Content consistency loss

Let (cxi
, sxi

) = Ei(xi) be the content code cxi
and style code sxi

of the input
i-channel. Content consistency loss enforces content codes of G-channel and B-
channel of the same image to be the same.
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Lc(x) = ∥cxG
− cxB

∥1 (2)

One may concern that the content codes will converge to zero using this
simple loss. However, the semantic segmentation loss will enforce them to be
non-zero in order to generate a meaningful semantic segmentation map.

3.4 Style consistency loss

Style consistency loss, on the other hand, enforces the style codes of the same
channel to be the same across different images. Let x and y be 2 different images,
xi and yi be the i-channel of the two, style consistency loss can be computed as
follows:

Ls(x, y) =
∑

i∈{G,B}

∥sxi
− syi

∥1 (3)

The style codes are also constrained to be non-zero by the channel recon-
struction loss and content consistency loss. As the content codes are the same
for all channels of the same image and the reconstructed channels should look
differently, the style codes should be the main contributor of such differences,
hence they are enforced to be non-zero.

If the batch size is larger than 2 then the style consistency loss will be com-
puted on the first and second samples, second and third samples, etc. The style
consistency loss is also applied on the first and last samples forming a cycle of
style consistency.

3.5 Semantic segmentation loss

We use the weighted cross-entropy loss for the semantic segmentation task. Let
M , N and K be the width, height and number of channels of the semantic
segmentation map zi = GS(xi). Here, K is also the number of classes in the
dataset and wk is the loss weight of the class k. The larger wk is, the more
attention is spent on reducing the loss values from class k.

Lss(x) = (4)

−
∑

i∈{G,B}
∑M

m=1

∑N
n=1

∑K
k=1 wk log

(
ezi(m,n,k)∑K

j=1
ezi(m,n,j)

)
(5)
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3.6 Total batch loss

We set the task weight of the content consistency loss, style consistency loss as
they are our fundamental constraint. We also set the task weight of the segmen-
tation loss to 10 as it is our main task. Due to the nature of the style consistency
loss, our total loss is provided in a form for the whole batch. Let |B| be the batch
size of a batch B and xb be the b-th sample in the batch.

L(B) = 10
|B|

(
Ls(x1, x|B|) +

∑|B|
b=2 Ls(xb−1, xb)

)
(6)

+
∑|B|

b=1 (10× Lc(xb) + Lr(xb) + 10× Lss(xb))

(7)

4 Experiment result

4.1 LandCover.ai

To the best of our knowledge, LandCover.ai [2] is one of the benchmark aerial
segmentation datasets that includes buildings, woodlands and water classes for
our experimental purpose. They also has the background class, which involves
objects and regions those do not belong to other 3 classes. It covers 216 km2 of
rural areas in Poland with the resolution being 25/50 cm/px. The training set
has 7470 aerial images of size 512 x 512 pixels in the training set. The validation
set and the test set have 1620 aerial images of the same size in each set.

We follow the previous work and use mIoU, which is the mean IoU of the
four classes, as our evaluation metric.

IoU =
TP

TP + FN + FP
(8)

Here, TP stands for True Positive, FN stands for False Negative, FP stands for
False Positive.

The training dataset also suffers from serious class imbalance. To address this
issue, we employ the weighted cross-entropy loss for the semantic segmentation
task. The class distribution and our proposed class weights are shown in Table 1.

4.2 Investigation on RGB channels

We investigate the effectiveness of each channels on the segmentation result by
training U-net on each channel separately. The result is shown in Table 2. As
expected, Green channel has the best performance in Woodlands as it is the
dominant color in the Woodlands class, Blue channel has the best performance
in Water as it is the dominant color in the Water class. However, Red channel’s
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Table 1. Class distribution in the training set of LandCover.ai and our used class
weight.

Buildings Woodlands Water Background

Percentage 0.86% 33.21% 6.51% 59.42%
Class weight 0.8625 0.025 0.1125 0.0125

Table 2. mIoU of U-net trained on separate channels.

Channel Buildings Woodlands Water Background Overall

Red 60.6% 78.26% 62.63% 64.75% 66.59%
Green 79.61% 90.06% 90.47% 88.46% 87.15%
Blue 80.6% 89.74% 91.05% 88.2% 87.4%

Green & Blue 79.09% 90.56% 91.33% 88.64% 87.41%

performance is very poor, especially on the Buildings class which it is supposed
to prevail as the roof color might be red. We suspect this is due to the lighting
condition in this dataset. Therefore, in this work and for this dataset, we will
only consider G-channel and B-channel. Our framework can be easily extended
to a 3-channel version.

4.3 Aerial segmentation using disentangle learning on G-channel
and B-channel

We initialize our network parameters with the pre-trained U-nets on G-channel
and B-channel in the previous section where they are applicable. We train the
network using Adam optimizer with weight decay set to 10−7. As the optimiza-
tion space of the network on this problem is very tricky, we first set the learning
rate to 10−4 and then decrease in a phased manner to avoid overshooting.

As the training progresses, the content consistency loss and style consistency
loss easily decrease down approximately to zero while the segmentation perfor-
mance keeps increasing. This fact indicates that our hypothesis of style codes of
the same channel across different images being the same is evidently reasonable.

We compared the proposed method with baseline implementation with DeepLabv3
in[2], which is non-augmentation version because we want to make clear perfor-
mance comparison between two methods.The result is shown in table 3, which
demonstrate that our method can disentangle semantic content successfully
across G and B channels and their corresponding style noises, and shows better
performance on image segmentation.

5 Conclusion

We conduct an investigation on the effectiveness of R, G, B channels on the
segmentation performance and find that each channel especially performs well for
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Table 3. mIoU of the proposed method and baseline implementation with
DeepLabV3+OS4 in[2] .OS denotes encoder output stride during training and eval-
uation.

Methods Buildings Woodlands Water Background Overall

DeepLabV3 77.53% 91.05% 93.84% 93.02% 88.86%
Our Methods 79.47% 91.56% 94.33% 92.64% 89.5%

different classes due to their dominant color present in those classes. We propose
a disentangle learning method to remove potential noisy information by setting 2
important constraints: channels of the same image should share the same content
code and the same channel in different images should share the same style code.
Our method demonstrates the effectiveness on aerial image segmentation. In the
future work, We will continue to do investigation on disentanglement of more
channels such as hyperspectral images.
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