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Abstract. Dataset distillation aims to reduce the dataset size by cap-
turing important information from original dataset. It can significantly
improve the feature extraction effectiveness, storage efficiency and train-
ing robustness. Furthermore, we study the features from the data distil-
lation and found unique discriminative properties that can be exploited.
Therefore, based on Potential Energy Minimization, we propose a gen-
eralized and explainable dataset distillation algorithm, called Potential
Energy Minimization Dataset Distillation(PEMDD). The motivation is
that when the distribution for each class is regular (that is, almost a
compact high-dimensional ball in the feature space) and has minimal
potential energy in its location, the mixed-distributions of all classes
should be stable. In this stable state, Unscented Transform (UT) can be
implemented to distill the data and reconstruct the stable distribution
using these distilled data. Moreover, a simple but efficient framework
of using the distilled data to fuse different datasets is proposed, where
only a lightweight finetune is required. To demonstrate the superior per-
formance over other works, we first visualize the classification results
in terms of storage cost and performance. We then report quantitative
improvement by comparing our proposed method with other state-of-
the-art methods on several datasets. Finally, we conduct experiments on
few-shot learning, and show the efficiency of our proposed methods with
significant improvement in terms of the storage size requirement.

Keywords: dataset distillation, potential energy

1 Introduction

Energy consumption in deep learning model training is a big concern in real-
world applications [29], one of the solutions for this problem is knowledge dis-
tillation [10]. It transfers the knowledge from a deep complex model to a simple
one, hence people can save the running time. Another direction is dataset distilla-
tion [38, 30, 9]. It tries to synthesize some data samples or features to summarize
information in the original huge dataset and use these synthesized data to train
models more efficiently.

However, most dataset distillation algorithms mainly focus on the informa-
tion in the models and try to reproduce the ability by utilizing small models or
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Fig. 1: If the distilled data is not biased (top left), even the overfitting boundary
generated by deep learning models, which is common in few-shot learning, can
better represent the ground truth distribution than the biased one(top right).For
properly estimated distribution (yellow circle), the condition is the same.

small datasets. The properties of dataset are ignored. In the naive dataset dis-
tillation[39], the dataset properties are explored by “black box” meta-training
process, which is not robust and explainable. It should be noticed that, in the
setting of dataset distillation, which is essentially a few-shot learning scenario,
models tend to overfit such small dataset[42]. The obtained distilled dataset
is only adequate for networks used in the training iterations of the distillation
process.

Therefore, to avoid overfitting and the rigid training constraints, we hope to
distill the data with the consideration of inherent dataset statistical properties.
Noticed that the dimension in feature space is much lower, so it’s easier to
be calibrated [41]. Also, mean and variance of Gaussian distribution could be
transferred across similar classes [26], all the transformation are performed in
the feature space (Figure 2 left), so we use Gaussian distribution to calibrate
the feature distribution. In the final calibrated space, the features of different
classes are expected to be far enough while features of similar classes should
be in a distribution with low variance. The second one could be achieved in
the distribution calibration stage, the ideal distance in the first requirement,
however, is hard to determine. A large distance could make classification more
accurate, but it makes the feature space sparse. On the other side, a small
distance would cause the decrease in accuracy. Therefore, we choose to adapt
the idea of potential energy stable equilibrium, this equilibrium exists if the net
force is zero, any changes in the system would increase the potential energy
[8]. This stable equilibrium describes the perfect distance between the center of
each class(Figure2 right). In the stable system, the features from different classes
could be easily classified using a simple classifier. What’s more, the centers and
edge points can be the distilled data which is the best subset of the original
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Fig. 2: In original feature space (left), the distributions are random and hard to
classify. After the distribution calibration and transformation, a stable state is
achieved(right) in which the distribution is tight and all the classes are ’stable’
according to the potential energy stable equilibrium. Distilled data could be
easily chosen based on this stable system, these distilled data, along with the
transformation matrix, could be used to fuse dataset and evaluate data quality.

dataset considering the data distribution, then if new models are trained on
these distilled data, the accuracy of models trained on original dataset could
be recovered. In experiments, besides the original ability of dataset distillation
(accuracy recovery), visualization results show that our the chosen images are
explainable with good diversity, this explainability can be further exploited to
make more use of these distilled samples. We also use experiment results to
show that simple classifier with our dataset distillation strategy can perfectly
handle data fusion and data quality evaluation tasks. As an extension to current
dataset distillation algorithm, our algorithm can also outperform SOTA results
in few-shot learning. Overall, our contributions are:

– Potential Energy Minimization based Dataset Distillation (PEMDD). Ap-
plying the concept of PEM and distribution calibration to the feature vec-
tors to find the stable state in feature space. Therefore, dataset could be
distilled while, to the maximum extent, avoiding harming the distribution
reproduction. In our model, only few parameters are added. What’s more,
this strategy is also shown to be useful in few-shot learning.

– Unscented Transformation (UT) for dataset distillation. UT is used to distill
the data which could be used to reconstruct the stable distribution from dis-
tilled samples. Then the reconstructed distribution could be used to perform
the up-sampling and other downstream tasks.

– Framework for the applications using dataset distillation and our stable sys-
tem. Based on the distilled data and the transformation matrix of stable sys-
tem, we propose frameworks to fuse dataset in three scenarios: (i) 2 datasets
share same classes; (ii) new dataset contains new classes; (iii) 2 datasets
share some same classes while new dataset contains new classes. What’s
more, PEM solution for few-shot learning is also tested in this paper and
the results are good.
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Fig. 3: Workflow for PEM-based dataset distillation. (a) Training process.
This part shows the training process in which the PEM transformation model is
trained, then the stable distribution is derived and the distilled data is selected
from the original dataset based on the sampling strategy in stable distribution
system. (b) Testing process. This part illustrates the testing process, the test
sample is also first transformed into the feature space and then converted into
the stable system using the trained PEM transformation model. (c) Distilled
data for applications. This part demonstrates the basic strategy of using
the distilled data, they could be used to reconstruct the distributions for each
class while ideally, they are same to the distributions in the stable system. This
strategy could be flexibly adapted into different scenarios.

In the following part of this paper, some preliminaries and related works are
listed in section 2, then the algorithm details of PEM-based dataset distillation
is demonstrated in the beginning of section 3, then the rest of that section
shows the solution for few-shot learning and dataset fusion. Finally, experiment
details are described in section 4. Concretely, in the experiment, we use few-shot
learning, where our algorithm could achieve competitive results compared with
SOTA results, to show the power of stable state derived by PEMDD, then the
dataset fusion experiment shows the advantages of our distilled data by almost
recovering the classification accuracy with only few data samples kept.

2 Related work

2.1 Dataset distillation

Computational cost in deep learning becomes more and more expensive, model
compression starts to attract much attention of researchers [1, 23, 11]. Dataset
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distillation[38] is one of them and was first introduced in the inspiration of
network distillation [10], some theoretical works illustrate the intuition of dataset
distillation [31] and extend the initial dataset distillation algorithm [30]. Besides
these works, many works have shown impressive result in generating or selecting
a small number of data samples [7, 32, 33, 2, 27, 3] utilizing active learning, core
set selection, etc.

Although our idea is also to find the core dataset, we borrow the idea of
dataset distillation to deal with data depending on the network information
and select the core dataset based on the hyper-ball (calibrated distribution)
we generated in the stable feature space. What’s more, the advantages of the
stable system make it possible to use distilled data and transformation matrix
to perform more downstream tasks.

2.2 Distribution calibration

As shown in figure 1, some metrics could be used to estimate the distribution
based on the distilled data [13, 37], but most of them assume the kind of distribu-
tion is known. To better reconstruct the distribution based on distilled data, the
data distribution should follow a specific distribution (Gaussian in this paper).
Many papers tried to calibrate the distribution of the data for different purposes
[42, 28, 24], the main idea is to calibrate the data distribution into a regular and
tight distribution.

However, the calibrated distribution in these algorithms cannot be directly
used in the dataset distillation setting. In dataset distillation, we want the dis-
tilled data to maximally contain the information in original dataset without
being affected by other classes. Furthermore, in the application phase, the ad-
dition of new data samples would make the system unstable if the distance of
each class if unstable, so we use the concept of potential energy to avoid such
risk to the greatest extent possible.

2.3 Potential Energy

Potential energy is a simple concept in physics. In this theory, there exists an
distance between two particles (r0). If the distance becomes closer, the resultant
force is attractive while the resultant force changes to be repulsive force. Only
when the resultant force is zero, the potential energy is lowest, which means that
the system is stable [4, 18].

In this paper we choose to adapt this concept to find the perfect distance
between 2 feature vectors. We use molecular potential energy to optimize the
position of centroids to make them easy to classify while not being too far, then
atomic potential energy is used to optimize the position of features of same class
to make them close enough.
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3 Method

In this section, the basic problem for dataset distillation is first defined in sec-
tion 3.1 and the solution is revealed in section 3.2, then a concrete scenario is
shown to demonstrate the application framework in section 3.3. Finally, our al-
gorithm is applied into the few-shot learning problems and a thorough analysis
is demonstrated.

3.1 Problem Definition

Given a labelled dataset D = {xi, yi} where xi ∈ R is the raw data sample
and yi ∈ C is the corresponding labels with C denoting the set of classes. Then
assume that a pretrained model M which could extract features F = {fi} from
D where fi is the feature vector of xi. The goal of dataset distillation is to select
a few data samples which capture the most important distribution properties of
D.

To realize the dataset distillation, we suggest to learn a transformation T to
transfer F into an new embedding space where features from same class become
more compact while features from different classes are in a ’moderate’ distance.
Then, based on the transferred distribution, a subset of original dataset D are
collected as distilled dataset S.

3.2 PEM-based transformation

Tukey’s Ladder of Powers Transformation To make the feature distri-
butions more regular, i.e. be more like Gaussian, the first step in PEM-based
transformation is adopting the Tukey’s Ladder of Powers Transformation [34] to
reduce the skewness of distributions.

The function of Tukey’s Ladder of Powers Transformation can be varied
based on the configuration of the power. The formulation of this transformation
can be expressed as:

x̂ =

{
xP if P ̸= 0

log(x) if P = 0
(1)

where P is the hyper-parameter which could control the way of distribution
regularization. To recover the feature distribution, P should be set to 1. If the
P decreases, the distribution becomes less positively skewed and vice versa.

Potential Energy minimization Considering a linear transformation with
weight WT as

Fs = WTF (2)

where Fs is the desired feature, F is the input feature. we hope to find a suitable
distance among classes to ensure the diversity of the latent feature. To achieve
this goal, recall the potential energy expression [4], which may have different
forms. In this paper we use the following formula:
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Fig. 4: Visualization for dataset fusion with PEM in CUB-200. a) shows the
original feature distribution, after PEM transformation, they are stable in b). In
c), some new samples whose class are same with the classes in b) are added, and
in d) they are perfectly handled using PEM. In e), some samples of new classes
(purple points) are added, then the PEM transformation results are shown in f)
after fine-tune, they are in the stable equilibrium again.

E(r) =
1

r3
− 1

r2
(3)

where r is the distance between two particles. Here, r0 is the optimal distance
for minimal potential energy. Then we adapt this equation and derive our loss
function to learn linear transformationWT that minimizes the ’potential energy’
between the extracted features of every pair of data points:

L =

N−1∑
i=1

N∑
j=i+1

[
1

(γijdij + b0)3
− 1

(γijdij + b0)2

]
(4)

where dij = dis(WT fi,WT fj) with dis(·, ·) representing the Euclidean distance,
fi, fj are the input features, N is the number of data samples. The hyperparam-
eter b0 (0 < b0 < r0) is introduced to improve the numerical stability of PE. γij
is the function to control the properties of loss, which can be defined as:

γij =

{
τ0 if yi = yj

τ1 if yi ̸= yj
(5)

where τ0, τ1 are the inter class and inner class weights, respectively. In this paper,
we set 0 < τ1 < τ0.

Process of Dataset Distillation In figure 3 (a), a co-stable system with de-
sired distribution is derived after the optimized transformation. Then some data
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points can be sampled based on the stable equilibrium. Considering the inner-
class Gaussian-like properties, we use the data sampling strategy in UT [36, 37]
to get the distilled data points S (sigma points in UT) and their corresponding
weights ω for distribution reconstruction. Here there are two sets of weights ωm

and ωc, ωm is used to recover the means of the original distribution while the
ωc is for the reconstruction of the covariance matrix.

For each class, the first sample in sigma points set is S[0] = µ with µ repre-
senting the mean, then the other samples are sampled as following:

S[i] =

{
µ+ Vi for i = 1, ..., d− 1

µ− Vi−d for i = d, ..., 2d
(6)

where variance Vi =
√
(d+ λ)Σ(:, i), d stands for the dimension of the features,

λ is the scaling parameter and Σ(:, i) is the ith column of the covariance matrix
while the covariance matrix could be easily derived with data samples.

For this sequence S, the corresponding weights ωm for mean estimation with
sigma set can be calculated as:

ω[i]
m =

{
λ

d+λ if i = 0
1

2(d+λ) if i = 1, ..., 2d
(7)

while ω
[i]
m is the weight for the ith element in S, then the equation of the weight

ωc for calculating the covariance is:

ω[i]
c =

{
ω
[0]
m +H if i = 0
1

2(d+λ) if i = 1, ..., 2d
(8)

In equations 7 and 8, λ = α2(d+ k)− d and H = 1− α2 + β. To control the
distance between the sigma points and the mean, we could adjust α ∈ (0, 1] and
k ≥ 0. In some literature [36, 37], β = 2 is an optimal choice for Gaussian.

It should be noticed that, the sigma points S are just sampled in the latent
feature space. Finally, for data sample selection, we suggest modeling the dataset
distillation as an assignment problem and select the data samples according to
the distance (such as the Euclidean distance) between real data features and
the sigma points. When considering only one-to-one correspondences modeled
as bipartite graph matching, Hungarian algorithm[12] can be used to solve the
assignment problem in polynomial time. After the bipartite graph matching,
sigma points will be assigned to real data samples.

Classification for new samples As shown in figure 3 (b), when a new test
sample comes in, it is first transformed by the pretrained model (feature extrac-
tor) and our PEM model, then a simple classifier like Logistic classifier[21] could
be used to classify this sample effectively and robustly.
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3.3 How to fuse datasets

In this part, we extend the basic problem defined in section 3.1 to demonstrate
the solution in some more concrete application scenarios in dataset fusion.

Dataset fusion problem definition Recall the problem defined in section
3.1, a distilled dataset S is derived from the labelled dataset D = {xi, yi}. Now
assuming a new dataset Dnew = {xnew

i , ynewi } appears, where xnew
i ∈ R is the

raw data and ynewi ∈ Cnew is the data label with Cnew representing the new
class categories.

The goal in this section is to find a fine-tuned PEM transformation T new to
realize a new stable state for fused dataset Dfuse = S ∪Dnew. There are mainly
2 settings in this problem. The first setting is that two datasets share exactly
same classes, i.e. Cnew = C. The other one setting considers the Cnew ̸= C.

Distribution fusion In both setting, the fusion process is similar to the process
described in section 3.2. At first, to estimate the fused statistics more accurately
,we will up-sampling some feature-points. Considering the distribution for each
class after PEM based transformation are Gaussian-like, features can be easily
generated with re-parameter trick. Then a PEM training process as shown in
figure 3 (a) is performed on Dnew to get the stable distribution.

3.4 Few-shot learning

In PEM, the inner-class compactness and inter-class diversity of the latent fea-
tures is the foundation of our success in dataset distillation. Therefore, we extend
the PEM strategy in few-shot learning setting to show our advantages in data
property exploitation.

Few-shot learning problem definition A few-shot learning problems can be
a simple extension of the problem defined in previous section, where the samples
in Dnew are quite few. Tasks in few-shot learning could be called N-way-K-shot
[35] ,where there are N classes in Cnew and K labelled samples for each class.

Few-shot learning solution The solution for few-shot learning can be modeled
as an simplified version of PEMDD. At first, the PEM transformation is trained
using very few samples to get the stable state, then this transformation is used to
transform the test features into the latent feature space. Then, a simple classifier,
such as logistic regression, can be utilized for label prediction.

We will show more details about our implementation of few-shots learning
in section 4.
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3.5 Analysis

Intuitively, the proposed PEM framework share some common ideas with the
well-known Fisher Discriminant Analysis (FDA) [19]. Both methods try to in-
crease the diversity between classes and reduce the diversity within classes. How-
ever, PEM is constructed based on the steady state through the PE function,
which is discovered in physics and makes the separation between classes more
balanced. Meanwhile, our PEM also guarantees the existence of an stable state
for all systems. All these reasons above allow the PEM-based method to maintain
good performance on few-sample data set compared with works like FDA.

Our method is also different from the dataset distillation in [39]. For the
dataset distillation in [39], its aim is to replicate the performance of the entire
dataset from the synthetic points, but our method is trying to select some in-
formative samples and their corresponding linear transformation weights. Our
method allows more flexible selection of data sample, while the dataset distilla-
tion must predefine the synthesized number before training. Also a Hungarian
algorithm was used section 3.2, one can also increase the sample to be selected
by an unbalanced Hungarian algorithm. For a classical Hungarian problem for
data sample selection, the complexity is just O(d3).

Last but not least, our method can also be adopted as a first principle to
learn diverse and discriminative features for down-stream tasks.

4 Experiment and discussion

4.1 Experiment setup

Datasets In this paper, miniImageNet [22] and CUB-200 [40] are used to eval-
uate our algorithm.

For miniImageNet, in few-shot learning validation experiment, all classes are
split into 64 base classes, 16 validation classes and 20 new classes as [22] did in
their work. However, in data fusion experiment and visualization part, only 10
classes are selected from the miniImageNet because of the reality and visualiza-
tion simplicity, the train-test-split conditions are illustrated in the experiment
part (section 4.3).

CUB-200 is a fine-grained benchmark for few-shot learning. There are 11,788
images with size 84× 84× 3 for 200 different classes of birds. These classes are
spilt into 100 base classes, 50 validation classes and 50 novel classes [5].

Evaluation metric For different tasks, we adopted different metrics. In few
shot learning setting, top-1 accuracy is used to evaluate our strategy in 5way1shot
and 5way5shot settings for both 2 datasets [42]. In Data fusion setting, all ex-
periments are variants of the image classification task, so top 1 accuracy is used
to evaluate the performance of different strategy.
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Fig. 5: Visualization of dataset distillation for dog.

Implementation details In all experiments, we use pretrained WideResNet
[17] to extract the features, features are extracted from the layer before fully
connected layer with a ReLU activation function which makes the output non-
negative [42]. The parameters of τ0,τ1,b0 are set to 1, 0.1, 0.3, respectively. The
embedding dimension size is set to 12, therefore, the sigma points number for
each class will be 25. We also follow the Tukey transformation settings in [42].

In few-shot learning part, we follow the solution described in previous section
to deal with the extracted features, nearest center is used to be the classifier.

In data fusion part, we choose logistic classifier to represent the current SOTA
results and compare our results with them. We use the logistic classifier imple-
mentation of scikit-learn[20] with the default settings.

4.2 Empirical Understanding of PEMDD

Table 1a shows the experiment results in a regular setting. In this setting, for
each class, 450 samples are used to train the PEM model and 150 samples are
used as test set. As shown in table 1a, when the training samples are reduced to
25%, no matter what strategy is used to choose samples, a huge decline in the
accuracy occurs. Then in our strategy, we adapt Logistic [20] as the classifier.
With our strategy (PEM with sampling), we sample 1000 points for each class in
test phase, the results are almost recovered while a fine-tune PEM could enhance
the performance (from 0.943 to 0.988).

Then to further illustrate the advantages of our results, we visualize the
20 “selected” images selected from MiniImageNet dataset for the ”dog” classes
(figure 5). We observe that the selected images are much more diverse and repre-
sentative than those selected randomly from the dataset (with random selection
program), indicating such PEM-based distilled images can be used as a good
“summary” of the dataset.

At last, we compare to the state of the art dataset distillation method[39].
We test our method on CIFAR-10 dataset. The model is identical to the ones
used in[39], which can achieve about 80% test accuracy on CIFAR-10 in a fully
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Method CUB-200 miniImageNet

Full data 1.000 0.938
Class-based random (10%) 0.378 0.258
Most remote (10%) 0.463 0.314
PEM 0.981 0.923
PEM+sampling 0.943 0.911
PEM+sampling+PEM 0.988 0.941

(a) Experiment results for basic classi-
fication task.

Method 50 100 150 200

All random 0.091 0.132 0.158 0.165
Class-based random 0.092 0.143 0.174 0.220
K-means 0.105 0.184 0.223 0.347
dataset distillation(random init) - 0.368 - -
dataset distillation(fixed init) - 0.540 - -
PEMDD 0.247 0.519 0.614 0.719

(b) Experiment results compared with
original dataset distillation algorithm.

Table 1: Basic experiments of PEMDD.

supervised setting. The dataset distillation will synthesis 100 pictures(10 pictures
for each class). The PEM based method, K-means and Random selection will
select 50-200 pictures. The embedding dimension size of PEM is set to 10. All
the result is shown in Tab.1b.

4.3 Data Efficiency Application

In this section, we perform a series of experiments to test our strategy on different
settings.

In table 2a, we equally split the 10-th class. 300 samples are used to train
the PEM and others are used as new samples. Other settings are same as pre-
vious one. In our setting, these two sets have different distribution on the 10-th
class, therefore conventional method which builds on the i.i.d assumption may
suffer from the performance decreasing. As shown in table 2a, a simple fine-tune
after adding new data, the PEM based method could get a good test accuracy
performance (0.980).

Then, we remove the 8-th class in the training dataset and treat it as a totally
new class. As shown in table 2b, the PEM based with fine-tune could also give
good result (0.981) in this setting.

Method CUB-200 miniImageNet

Full data 1.000 0.82
Class-based random (10%) 0.176 0.238
PEM+Sampling 0.516 0.610
PEM+Sampling+PEM 0.980 0.932

(a) Experiment results for adding new
samples with same classes.

Method CUB-200 miniImageNet

Full data 1.000 0.938
Class-based random (10%) 0.168 0.185
PEM + Sampling 0.588 0.681
PEM + Sampling+PEM 0.981 0.940

(b) Experiment results for adding new
classes.

Table 2: Data efficiency of PEMDD.

To illustrate the effectiveness of PEM in above three tasks, we visualize the
feature on CUB-200 dataset with t-SNE[16] before and after the PEM opti-
mization. In figure 4, (a),(c),(e) show the distribution condition before the PEM
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Table 3: Experiment results of our few-shot learning solution.

Methods miniImageNet CUB
5way1shot 5way5shot 5way1shot 5way5shot

LEO[25] 63.80 77.59 - -
Negative-Cosine[14] 62.33 80.94 72.66 89.40
TriNet [6] 58.12 76.92 69.61 84.10
E3BM [15] 63.80 80.29 - -
LR with DC [42] 68.57 82.88 79.56 90.67
S2M2 R [17] 64.93 83.18 80.68 90.85
PEM-S 58.48 82.75 72.81 90.55

transformation. In (a), the distributions are hard to classify while in (b), features
among classes are diverse and easy to classify. Similarly, in (c) and (e), when
the new samples come in, the clusters become unstable and PEM could stabilize
them again, as shown in (d) and (f). Overall, in the most stable state, all classes
have a ”safe” distance.

4.4 Few-shot Application

In the experiment, a PEM transformation is learned based on few-shot training
samples to get the stable state, then this transformation is used in the testing
phase to transform the test set features into stable state.. Our method, PEM-
S,contains the up-sampling process mentioned before. The sampling number is
500. The experiment results are summarized in table 3.

As shown in the table 3, our results achieve SOTA in 5way5shot learning,
though not has the best performance in 5way1shot learning. This is because our
strategy partly rely on the inner class compactness and the 1-shot setting cannot
provide such information for our PEM-S method.

4.5 Hyper-parameters

To show the effeteness and robustness of the proposed method, we run some
Hyper-parameters studies in the baseline problems with mini-Imagenet dataset.

Properties of PE function The Properties of the PE function is mainly
affected by the γij . For simplicity, we fixed the value of τ0 to 1, and run a com-
prehensive study of the selection τ1. Figure 6a illustrates the average PE value
(1/N(N − 1)) of the PE of the whole stable distribution) at training dataset
and test accuracy. It can be witnessed that appropriate values of τ1 can make
the system have lower PE and better test accuracy.

Embedding size We test our method with different embedding size. From
figure 6b, one can found that the embedding size may slightly affect the PE
values when > 7.

Different backbone networks Table 5 shows the consistent performance
on different feature extractors, i.e, five convolutional layers (conv4), AlexNet,
vgg16, resnet18, WRN28(Baseline). It can be concluded that the PEM based
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(a) The effect of different values of τ1.
(b) The effect of the number of embed-
ding dimensions.

Fig. 6: Hyper-parameters testing

method can achieves at almost 10× accuracy improvement for conv4,AlexNet
and vgg16. Moreover, the WRN28 achieve the best performance. It is because
of that WRS28 is a semi-supervised method that considers the main-fold infor-
mation of the dataset.

Table 4: Experiment results with different backbones.

Backbones Class-based random PEM-based

conv4 0.089 0.858
AlexNet 0.098 0.913
vgg16 0.106 0.905
resnet18 0.151 0.921
WRN28(Baseline) 0.258 0.941

5 Conclusion and future work

In this paper, we propose a PEM-based framework for DD and few-shot learning
settings. PEM can help features to achieve a stable state in the new embedding
space. In the new embedding space, the features will represent inner class com-
pactness and inter class diversity, which is the foundation of UT based DD. Ex-
periments results in multi-scenarios reveals the superiority of our PEM strategy.
our PEM-based framework shows that the limited data could be used to recover
or even outperform the performance of original data while largely reducing the
computation costs and storage costs. Future work will explore more application
scenarios for distilled data. Moreover, statistical properties may also be used to
generate samples, instead of choosing samples from the dataset. What’s more,
the PEM can be introduced as a first principle for machine learning problems
instead of the conventional ’black box’ models.
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