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Abstract. A representation matching the invariance/equivariance char-
acteristics must be learnt to rebuild a morphable 3D model from a single
picture input. However, present approaches for dealing with 3D point
clouds depend heavily on a huge quantity of labeled data, while unsu-
pervised methods need a large number of parameters. This is not produc-
tive. In the field of 3D morphable model building, the encoding of input
photos has received minimal consideration. In this paper, we design a
unique framework that strictly adheres to the permutation invariance of
input points. Matrix Decomposition-based Invariant (MDI) learning is a
system that offers a unified architecture for unsupervised invariant point
set feature learning. The key concept behind our technique is to derive
invariance and equivariance qualities for a point set via a simple but
effective matrix decomposition. MDI is incredibly efficient and effective
while being basic. Empirically, its performance is comparable to or even
surpasses the state of the art. In addition, we present a framework for ma-
nipulating avatars based on CLIP and TBGAN, and the results indicate
that our learnt features may help the model achieve better manipulation
outcomes.

Keywords: object centric representation, 3D learning, diffusion model

1 Introduction

Understanding objects is one of the core problems of computer vision, especially
in the avatar generation process, learning an object-centric representation is
important in many downstream tasks [14].In machine learning, even a small
attack [27] or image corruption [6] could produce a large accuracy decline. This
is specifically important in 3D settings because a point cloud will be generated
and can be varied based on different conditions. An object-centric representation
is a graceful representation that can handle the distribution shift [4].

In this paper, we investigate deep learning architectures that are able to
reason about three-dimensional geometric data, such as point clouds or meshes.
In order to accomplish weight sharing and other kernel improvements, most
convolutional architectures need extremely regular input data formats. Examples
of such formats are picture grids and 3D voxels. Before feeding point clouds
or meshes to a deep learning architecture, the majority of researchers often
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convert such data to conventional 3D voxel grids or collections of pictures (for
example, views) since point clouds and meshes do not have a regular format. This
particular modification of the data representation, on the other hand, results
in data that is needlessly large in volume, and it also introduces quantization
artifacts, which have the potential to conceal the inherent invariances of the
data.

To solve these problems, we propose a nearly non-parametric framework to
learn a more useful representation and reconstruct the 3D avatar from the por-
traits. Concretely, our contributions to this paper are:

– A self-supervised learning framework to learn the canonical representation
of the input. Two loss functions are introduced to make sure the learned
representations are invariant/equivariant.

– Tensor decomposition for representation learning. The learned representa-
tion could satisfy the invariance/equivariance properties, which could be
used in the 3D registration part which is the key component in 3D mor-
phable model learning.

– A generalized application framework to deal with 3D images. We use the 3D
morphable model reconstruction task as an example here, the results of the
generated avatar show that our proposed algorithm can deal with the avatar
manipulation well.

2 Related work

2.1 Point Cloud Features

Current point cloud feature extraction algorithms are mostly handcrafted based
on one specific task [18]. These features contain certain statistical properties that
are invariant to certain transformations. Therefore, they can be categorized into
intrinsic (local features) [1, 2, 23] and extrinsic (global features) [3, 13, 16, 20, 21].
However, it’s also necessary to optimally combine these properties. Although
[18] tried to perform the trade-off to find the best feature combination, it’s not
trivial to make the whole process explicit and efficient.

2.2 Deep 3D representations

Currently, there exist many approaches for 3D feature learning like Volumetric
CNNs [17, 19, 26] which utilize 3D convolutional neural networks to deal with
voxelized shapes. However, data sparsity and computation cost of 3D convolution
naturally limit the ability of the representations learned from these networks.
Then FPNN [15] and Vote3D [25] proposed some metrics to solve the problem
brought by data sparsity, but when these methods come to very large point
clouds, their operations based on space volumes constrain them. These days,
some new powerful methods like Multiview CNNs [22, 19] and Feature-based
DNNs [7, 12] are proposed. However, the representative ability of the extracted
features is still one of the key constraints of these metrics. Therefore, in this
paper, we’ll try to solve this problem.
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3 Object-centric representation learning

The key innovation of the proposed method is to utilize the simple but powerful
matrix decomposition to generate invariance/equivariance properties for points
set. In the section3.2, we first introduce the matrix decomposition module in our
method, then in section 3.3 we reveal our novel unsupervised pipeline. In the
following, section 3.4, we develop the decoder for input point sets reconstruction.
At last, we discuss the avatar generation extension for the proposed method in
the section 3.6.

3.1 Problem definition

We design a deep learning framework that directly consumes unordered point
sets as inputs. A point cloud is represented as a set of 3D points [18]

P = {Pn|n = 1, ..., N}, (1)

where each point Pn is a vector of its (x, y, z) coordinate plus extra feature
channels such as color, normal, etc. For simplicity and clarity, unless otherwise
noted, we only use the (x, y, z) coordinate as our point’s channels, as shown in
fig. 1.

The input point set is a subset of points from Euclidean space. It has three
main properties:[18]

– Unordered. Unlike pixel arrays in images or voxel arrays in volumetric grids,
the point cloud is a set of points.

– Interaction among points. The points are from a space with a distance met-
ric. It means that points are not isolated, and neighboring points form a
meaningful subset. Therefore, the model needs to be able to capture local
structures from nearby points, and the interactions among local structures.

– Invariance under transformations. As a geometric object, the learned repre-
sentation of the point set should be invariant to certain transformations. For
example, rotating and translating points altogether should not modify the
global point cloud category or the segmentation of the points.

3.2 Matrix decomposition for invariant and equivariant feature
learning

An overview of MD in the feature space is depicted in fig. 3. The point cloud
input will be transferred to a feature matrix X ∈ RM×d, then we can decompose
the matrix in the following manner:

X = UV + E (2)

where U ∈ RM×k and V ∈ Rk×d with k < d are the decomposition factors;
E is the residual. U can be considered as activation factor, which should be
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Fig. 1. Some examples of 3d point sets. Different colors indicate different semantic
parts of an object.

invariant and capture the most important information for dataset. While V can
be considered as the template factor, which is equivariant to each input data
sample. Therefore, UV is the low rank approximation of X[11]. As shown in fig
3, the MD is a white-box unsupervised decomposition, which utilized the low-
rank properties of the Feature Matrix. In MD, it can be conducted online[10].

Fig. 2. The decomposition of the feature matrix. The invariant part U records the
relative location, and the equivariant part V records the absolute location in world
coordination.

3.3 Encoder

The encoder training pipeline of the proposed method is illustrated in the fig. 3.
Our network is trained by feeding pairs of randomly rotated copies of the
same shape. The input point clouds are randomly generated from two random
transformations T1, T2 ∈ R(3) (rotating and translating). Note that we train such
a decomposition in a fully unsupervised fashion and that the network only ever
sees randomly rotated point clouds.
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Fig. 3. The pipeline of the proposed method. The framework can take 2D- or 3D-points
set as input.

As the two input point sets are of the same object, so the similarity loss can
be expressed as

Lsim = ∥V1 − V2∥F (3)

where ∥ · ∥F is the Frobenius norm of the matrix. Then, to learn the equiva-
lence features. we ask for the network to learn a localized representation of the
geometry. we define the following spatial loss for each input point set.

Lspa(P ) = tr(UTWU) (4)

where tr(·) is the trace of the matrix; W the weight matrix of 3D points set.
The W (m,n) is the weight between two points, and can be calculated as:

W (m,n) = exp(
∥Pm − Pn∥22

σ2
) (5)

where σ is the parameter to control the distance. For the sake of effectiveness,
one can just use part of randomly selected points for reconstruction. The spatial
loss considers the spatial relationship of the input 3D point set, as shown in the
fig. 7.

After training, we will choose the 3D points set with the minimal l1 norm of
U as the reference point set.

3.4 Reconstruction Decoder

For downstream tasks:

– Classification: need the invariant representation.
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Fig. 4. The spatial loss.

– Segmentation: need the equivariant representation.
– Point sets reconstruction: need the reconstructed matrix UV and an addic-

tive decoder that transforms the latent feature into 3D point sets.

It is clear that, in applications like Avatar[8], one should reconstruct the
lantern features to a 3D point set. In this paper, we design a decoder shown in
the fig. 5. The decoder MSE loss can be expressed as

Ldec =
1

N
∥P − P̂∥F (6)

where P̂ is the output matrix of the decoder.

Fig. 5. The decoder for point set reconstruction.

The decoder can be trained with/without the framework proposed in the
section3.3. When a train with the encoder3.3, the loss can be calculated as:

L = Lsim + α

2∑
i

Li
spa + β

2∑
i=1

Li
dec (7)

where α and β are weights to control the loss values. The joint training algorithm
is summed in algorithm 1.
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Algorithm 1: MDI Training

Input : Dataset {P} ∈ P; Weight α and β, Training epoch number T
Output: Encoder and Decoder
Initialize: model parameters for Encoder and Decoder
for t← 1 to T do

for each mini batch B do
for each object do

compute inputs point randomly generated from two random
transformations

compute loss in eq.7

compute the sum of all objects
update parameters using back propagation

return

3.5 Theoretical analysis

In this section, we intend to illustrate why the low-rank assumption is beneficial
for modeling the global context of representations by providing an example. The
low-rank assumption is advantageous because it illustrates the inductive bias
that low-level representations include fewer high-level ideas than the scale of the
representations. Consider a picture of a person walking on the road. The route
will be described by a large number of hyperpixels retrieved using a CNN’s
backbone. Notabene que la carretera puede ser considerada como repeticiones
de pequeos fragmentos de carretera, por lo que se puede representar la carretera
mediante la modelación y It is mathematically equal to locating a limited set of
bases D corresponding to various road patches and a coefficient matrix C that
records the relationship between the elementary road patches and the hyper-
pixels. This example demonstrates that in an ideal setting, high-level notions,
such as the global context, might be low-ranking. The hyper-pixels describing
the road patches have semantic properties that are similar. Nevertheless, owing
to the vanilla CNN’s ineffectiveness un modeling long-distance relationships is
reflected in its learnt representation, which includes too many local details and
inaccurate information and lacks global direction. Imagine the subject in the
photograph wearing gloves. When we see the gloves patch in our community, we
assume it defines gloves. When the broader context is considered, it becomes clear
that this patch is a portion of a person. The semantic information is hierarchical,
depending on the amount of comprehension desired.

The objective of this section is to enable networks to comprehend the context
globally by means of the low-rank recovery formulation. Incorrect information,
notably redundancies and incompletions, are modeled as a noise matrix. To high-
light the global context, we split the representations into two parts, a low-rank
global information matrix and a local equivariant matrix, using an optimization
approach to recover the clean signal subspace, eliminate the noises, and improve
the global information through the skip connection. The data might reveal how
much global knowledge the networks need for a certain operation.
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3.6 Measurement of learned features on avatar generation

Avatar generation can naturally be a good application for the testing of in-
variance and equivariance features. Fig. 6 shows the framework of our avatar
generation, which is based on the TBGAN proposed in [9]. Given a pre-trained
TBGAN generator G, let z ∈ Rd denote a d-dimensional random input vector
sampled from a Gaussian distributionN

(
0, σ2

)
and e originally denote a one-hot

encoded facial expression vector initialized to zero to obtain a neutral expression.
However, in this paper, the equivariant feature derived from the generated image
from CLIP becomes e. Let c ∈ C denote an intermediate layer vector obtained
by partial forward propagation of z and e through the generator G. Our method
first generates a textured mesh by using the generated shape, normal, and tex-
ture UV maps via cylindrical projection. Then given a text prompt t such as
’happy human’, c is optimized via gradient descent to find a direction ∆c, where
G(c+∆c) produces a manipulated textured mesh in which the target attribute
specified by t is present or enhanced, while other attributes remain largely unaf-
fected. In our work, we optimize the original intermediate latent vector c using
gradient descent and work in the 4× 4 dense layer s of the TBGAN generator.

Fig. 6. The avatar generation framework for testing the learned feature extractor.

The optimized latent vector c+∆c can then be fed into TBGAN to generate
shape, normal, and texture UV maps, and finally a manipulated mesh with
the target attributes. To perform meaningful manipulation of meshes without
creating artifacts or changing irrelevant attributes, we use a combination of an
equivariance loss, an identity loss, and an L2 loss as follows:

argmin
∆c∈C

Leq + λIDLID + λL2LL2 (8)

where λID and λL2 are the hyperparameters of LID and LL2, respectively.
While equivariance loss ensures that the user-specified attribute is present or en-
hanced, ID-loss and L2-loss leave other attributes unchanged, forcing disentan-
gled changes. The identity loss LID minimizes the distance between the identity
of the original renders and the manipulated renders:

LID = ∥(Uori −Uedi)∥2 (9)
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where Uori is the invariant feature of the original image and the Uedi is the
invariant feature for edited image. Similarly, the equivariance loss Leq can be
defined as:

Leq = ∥(Vori −Vedi)∥2, (10)

where Vori and Vedi are the equivariant features of the original image and
the edited image respectively. Finally, the L2 loss is used to prevent artifact
generation and defined as:

LL.2 = ∥c− (c+∆c)∥2 (11)

For TBGAN and renderer, we follow the same settings in [9].

4 Experiment results

This section evaluates the proposed approach and compares it against State Of
The Art methods. To evaluate our method, we rely on the ShapeNet (Core)
dataset . We follow the category choices from AtlasNetV2 , using the airplane
and chair classes for single category experiments, while for multi-category ex-
periments we use all the 13 classes in ShapeNet (Core) dataset. Unless noted
otherwise, we randomly sample 1024 points from the object surface for each
shape to create our 3D point clouds.

For all our experiments we use the Adam optimizer with an initial learning
rate of 0.001 and decay rate of 0.1. Unless stated otherwise, we use k=10 and
feature dimension d=128.

Our network architecture:

– Encoder. Our architecture is based on the one suggested in[24]: a point
net-like architecture with residual connections and attentive context nor-
malization.

– Decoder. Our decoder architecture is similar to AtlasNetV2[5](with train-
able grids).

The last section in this part shows the avatar reconstruction results based
on the framework shown in the section 3.6.

4.1 Reconstruction Result

We evaluate the performance of our method for reconstruction against two base-
lines:

– AtlasNetV2[5], the State Of The Art auto-encoder which utilizes a multi-
head patch-based decoder;

– 3D-PointCapsNet[28], an auto-encoder for 3D point clouds that utilize a
capsule architecture.

As shown in the table.1 We achieve State Of The Art performance in both
the aligned and unaligned settings.

We illustrate the reconstruction of 3D point clouds for all the methods. our
method can provide semantically consistent decomposition, for example, the
wings of the airplane have consistent colors.
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Aligned Unaligned
Airplane Chair Multi Airplane Chair Multi

3D-PointCapsNet 1.94 3.30 2.49 5.58 7.57 4.66
AtlasNetV2 1.28 2.36 2.14 2.80 3.98 3.08
MDI(Ours) 0.93 2.01 1.66 1.05 3.75 2.20

Table 1. Reconstruction – Performance in terms of Chamfer distance.

Fig. 7. Reconstruction results.

4.2 Classification Result

We compute the features from the auto-encoding methods compared in Section
4.1 – AtlasNetV2[5], 3D-PointCapsNet[28], and our learned invariance features.
We use them to perform 13-way classification with Support Vector Machine
(SVM) and K-Means clustering. Our results are superior to the other SOTA
method. We argue that the joint invariant and equivariant feature learning with
MD is important to unsupervised learning. This is especially obvious for the
unaligned part because of the advantages of our learned invariant and equivariant
features. And for aligned ones, we can also achieve competitive results.

Aligned Unaligned
SVM K-Means SVM K-Means

AtlasNetV2 94.07 61.66 71.13 14.59
3D-PointCapsNet 93.81 65.87 64.85 17.12
MDI(Ours) 93.78 71.42 86.58 49.93

Table 2. Classification – Top-1 accuracy (%)

260



Object Centric Point Sets Feature Learning with Matrix Decomposition 11

Fig. 8. Results of manipulation on equivariant features.

4.3 Avatar Generation

In this section, to show the power of our learned features, we follow the frame-
work shown in the figure 6. By doing this, our method can be used to change
their facial expressions such as ’smiling’, ’angry’, and ’surprised’. As can be seen
in fig. 8, our method can successfully manipulate a variety of complex emotions
on various input meshes with almost no change to other attributes. By com-
paring with the results of TBGAN [9], the advantages of directly manipulating
equivariant features are obvious.

By manipulating the invariant features, we slightly change the framework
shown in fig. 6. Concretely, the CLIP is used to generate the pictures with
global features (invariant features), then the U is extracted from generated im-
age. Then V is extracted from the original avatar images. The results also show
that our method provides a global semantic understanding of more complex at-
tributes such as ‘man’, ‘woman’, ‘Asian’, and ‘Indian’. Fig. 9 shows the results
for manipulations on various randomly generated outputs, where we can see that
our method can perform complex edits such as ethnicity and gender.

5 Conclusion

In this paper, we design a novel Matrix Decomposition-based Invariant (MDI)
learning framework, which can provide a unified architecture for unsupervised
invariant point sets feature learning.

Though simple, MDI is highly efficient and effective. Empirically, it shows
strong performance on point sets reconstruction and unsupervised classification.
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Fig. 9. Results of manipulation on invariant features.

Moreover, our framework will benefit other downstream like collaborative com-
puting in avatar generation.
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